Câu hỏi:

15/06/2022 893 Lưu

Cho số phức z thỏa mãn |z+1|=3 . Tìm giá trị lớn nhất của biểu thức: T=|z+4i|+|z2+i|

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

+ Số phức z=x+yi(x;yR)  có mô đun |z|=x2+y2

+ Sử dụng BĐT Bunhiacốpxki với hai bộ số (a;b),(x;y)   ta có (ax+by)2(a2+b2)(x2+y2)

+ Dấu  xảy ra khi xa=by .

Gọi số phức z=x+yi  (x;yR)

Theo đề bài |z+1|=3|x+1+yi|=3(x+1)2+y2=3

 Ta có T=|z+4i|+|z2+i|=|x+4+(y1)i|+|x2+(y+1)i|

=(x+4)2+(y1)2+(x2)2+(y+1)2

Áp dụng BDT Bunhiacốpxki ta có:

T2=((x+4)2+(y1)2+(x2)2+(y+1)2)2(12+12)[(x+4)2+(y1)2+(x2)2+(y+1)2]

T22(2x2+2y2+4x+22)=4((x+1)2+y2+10)=52 (vì (x+1)2+y2=3)

Do đó T213

Dấu "=" xảy ra khi và chỉ khi:

{(x+4)2+(y1)2=(x2)2+(y+1)2(x+1)2+y2=3{y=3x+3(x+1)2+(3x+3)2=3[{x=310y=910+3{x=310y=910+3

Vậy Tmax=213 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Đồ thị hàm số y=ax+bcx+d(adbc0)  có đường tiệm cận đứng là x=dc .

Đồ thị hàm số y=2x1x2  có đường TCĐ là x=2 .

Lời giải

Đáp án A

TXĐ: D=.  Ta có: y'=3x26x+3m  .

Để hàm số đã cho nghịch biến trên (1;2) thì y'0,x(1;2)  và bằng 0 tại hữu hạn điểm.

3x26x+3m0x(1;2)x22x+m0x(1;2)

(x1)2+m10x(1;2)1m(x1)2x(1;2)

Hàm số y=(x1)2  đồng biến trên (1;+)  nên cũng đồng biến trên (1;2).

(11)2<(x1)2<(21)20<(x1)2<1

1m(x1)2x(1;2)1m1m0

Lại có m[10;10]  mZ  nên m{10;9;;0} .

Vậy có 11 giá trị của m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP