Câu hỏi:

13/07/2024 3,495

Cho hình thoi ABCD có góc A bằng 60 độ , kẻ BH vuông góc với AD tại H . Gọi O là giao điểm của AC và BD; E là điểm đối xứng của B qua H; F là điểm đối xứng của C qua B.
a) Tứ giác ABCD là hình gì? Vì sao?
b) Chứng minh tứ giác ABCE là hình thang cân.
c)
Kẻ AKOE tại K. Gọi L là trung điểm của đoạn EK. Chứng minh AL//FK.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình thoi ABCD  có góc A  bằng 60 độ , kẻ  BH vuông góc với  AD tại H . Gọi  O là giao điểm của AC  và  BD;  E là điểm đối xứng của  B qua H; F là điểm đối xứng của  C qua  B. a) Tứ giác  ABCD là hình gì? Vì sao? b) Chứng minh tứ giác ABCE  là hình thang cân. (ảnh 1)

a) Xét tam giác ABD có AB = AD (do ABCD là hình thoi)

Suy ra tam giác ABD cân

 BAD^=600nên tam giác ABD đều

Ta lại có BH là đường cao nên BH cũng là đường trung tuyến của

tam giác ABD. 

suy ra H là trung điểm của AD.

Xét tứ giác ABDE có hai đường chéo AD và BE cắt nhau tại H

H là trung điểm của BE (do B và E đối xứng với nhau qua H)

H là trung điểm của AD (cmt)

Do đó ABDE là hình bình hành

ADBE tại H (gt).

suy ra ABDE là hình thoi.

b. Ta có DE//AB (ABDE là hình thoi) và DC//AB (ABCD là hình thoi) nên ED, DC trùng nhau

suy ra E,D,C thẳng hàng

Xét tứ giác ABCE có AB // DE nên tứ giác ABCE là hình thang (1)

Ta có: BAD^=BCD^=600(hai góc đối trong hình thoi ABCD)

Do tam giác ABD đều nên AB = BD = AD = AE = DE

Suy ra tam giác AED đều

AED^=600           

AED^=BCD^(=60°) (2)

Từ (1) và (2) suy ra ABCE là hình thang cân.

c. Vì ABCD là hình thoi có hai đường chéo AC giao BD tại O nên O là trung điểm của AC

Xét tam giác ACF có:

O là trung điểm của AC (cmt)

B là trung điểm của CF (C và F đối xứng với nhau qua B)

Suy ra OB là đường trung bình của tam giác ACF.

suy ra OB // AF

Mà BD // AE (ABDE là hình thoi)

Do đó AF trùng với AE hay A, F, E thẳng hàng.

Xét tam giác CFE, có :

D là trung điểm của CE

AD // EF

Suy ra A là trung điểm của EF.

Xét tam giác KFE, có :

L là trung điểm của KE (gt)

A là trung điểm của EF (cmt)

Suy ra AL là đường trung bình của tam giác FKE.

Suy ra AL//FK 
 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.

Xem đáp án » 13/07/2024 7,059

Câu 2:

Cho x+2y=5. Tính giá trị của biểu thức

A=x2+4y22x+10+4xy4y 

Xem đáp án » 13/07/2024 4,931

Câu 3:

Tìm đa thức thương và đa thức dư trong phép chia sau:

(2x3 – 7x2 + 13x + 2) : (2x – 1).

b) Xác định số hữu tỉ a để f(x) = x3 – 2x2 + 5x + a chia hết cho đa thức g(x) = x – 3.

Xem đáp án » 13/07/2024 2,219

Câu 4:

Cho A=2x+1(x4)(x3)x+3x4+2x+1x3.

a) Rút gọn biểu thức A.

b) Tính giá trị của biểu thức A biết x2 = 9.

c) Tìm giá trị nhỏ nhất của B biết B = A.(x2 – 5x + 4).

Xem đáp án » 18/06/2022 421

Câu 5:

Phân tích đa thức thành nhân tử:

a. x24y22x+4y

b. (x2+2x)(x2+2x2)3

Xem đáp án » 18/06/2022 277

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store