Câu hỏi:
13/07/2024 3,721
Cho hình thoi ABCD có góc A bằng 60 độ , kẻ BH vuông góc với AD tại H . Gọi O là giao điểm của AC và BD; E là điểm đối xứng của B qua H; F là điểm đối xứng của C qua B.
a) Tứ giác ABCD là hình gì? Vì sao?
b) Chứng minh tứ giác ABCE là hình thang cân.
c)
Kẻ tại K. Gọi L là trung điểm của đoạn EK. Chứng minh AL//FK.
Câu hỏi trong đề: Bộ đề kiểm tra Học kì 1 Toán 8 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
a) Xét tam giác ABD có AB = AD (do ABCD là hình thoi)
Suy ra tam giác ABD cân
Mà nên tam giác ABD đều
Ta lại có BH là đường cao nên BH cũng là đường trung tuyến của
suy ra H là trung điểm của AD.
Xét tứ giác ABDE có hai đường chéo AD và BE cắt nhau tại H
H là trung điểm của BE (do B và E đối xứng với nhau qua H)
H là trung điểm của AD (cmt)
Do đó ABDE là hình bình hành
Mà tại H (gt).
suy ra ABDE là hình thoi.b. Ta có DE//AB (ABDE là hình thoi) và DC//AB (ABCD là hình thoi) nên ED, DC trùng nhau
suy ra E,D,C thẳng hàng
Xét tứ giác ABCE có AB // DE nên tứ giác ABCE là hình thang (1)
Ta có: (hai góc đối trong hình thoi ABCD)
Do tam giác ABD đều nên AB = BD = AD = AE = DE
Suy ra tam giác AED đều
(2)
Từ (1) và (2) suy ra ABCE là hình thang cân.c. Vì ABCD là hình thoi có hai đường chéo AC giao BD tại O nên O là trung điểm của AC
Xét tam giác ACF có:
O là trung điểm của AC (cmt)
B là trung điểm của CF (C và F đối xứng với nhau qua B)
Suy ra OB là đường trung bình của tam giác ACF.
suy ra OB // AF
Mà BD // AE (ABDE là hình thoi)
Do đó AF trùng với AE hay A, F, E thẳng hàng.
Xét tam giác CFE, có :
D là trung điểm của CE
AD // EF
Suy ra A là trung điểm của EF.
Xét tam giác KFE, có :
L là trung điểm của KE (gt)
A là trung điểm của EF (cmt)
Suy ra AL là đường trung bình của tam giác FKE.
Suy ra AL//FKHot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi đó, ta có: a, b, c là các số nguyên dương và .
Diện tích tam giác ABC là: .
Chu vi tam giác ABC là: a + b + c.
Theo đầu bài, ta có:
(*)
Do tam giác ABC vuông tại A nên ta có: (định lý Py – ta – go)
Thay a = b + c – 4 vào (*) ta được:
2(b + c – 4 + b + c) = bc
4b + 4c – 8 – bc = 0
(4b – bc) + (4c – 16) = - 8
b(4 – c) + 4(c – 4) = - 8
(b – 4)(4 – c) = - 8
(b – 4)(c – 4) = 8
Vì b, c là các số nguyên dương nên ta có các trường hợp sau:
TH1:
TH2:
Vậy có hai tam giác vuông thỏa mãn yêu cầu bài toán là hai tam giác có các kích thước là: (6, 8, 10) và (5, 12, 13).
Lời giải
Ta có:
= (x2 + 4xy + 4y2) + (-2x – 4y) + 10
= (x + 2y)2 – 2(x + 2y) + 10
Thay x + 2y = 5 vào biểu thức A, ta có:
A= 52 – 2.5 + 10 = 25 – 10 + 10 = 25.
Vậy với x + 2y = 5 thì A = 25.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.