Câu hỏi:

13/07/2024 321

Giải phương trình:

a) x(x 3) + 2(x 3) = 0       

b) x12+x13+x12016=0  

c) 3x+1x+12x5x3+7x22x3=1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) x(x 3) + 2(x 3) = 0       

(x 3)(x + 2) = 0

x 3 = 0 hoặc x + 2 = 0

x = 3 hoặc x = – 2.

Vậy tập nghiệm của phương trình là S = {3; – 2}.

b) x12+x13+x12016=0 

(x1)(12+13+12016)=0

x – 1 = 0 (vì 12+13+12016>0)

x = 1.

Vậy tập nghiệm của phương trình là S = {1}.

c) 3x+1x+12x5x3+7x22x3=1.

ĐKXĐ: {x+10x30x22x30{x+10x30(x+1)(x3)0{x+10x30{x1x3

 

Phương trình đã cho tương đương:

3x+1x+12x5x3+7(x+1)(x3)=1

(3x+1)(x3)(x+1)(x3)(2x5)(x+1)(x+1)(x3)+7(x+1)(x3)=(x+1)(x3)(x+1)(x3)

 

(3x + 1)(x – 3) – (2x – 5)(x + 1) + 7 = (x + 1)(x – 3)

(3x + 1)(x – 3) – (x + 1)(x – 3) – (2x – 5)(x + 1) + 7 = 0

(3x + 1 – x – 1)(x – 3) – (2x – 5)(x + 1) + 7 = 0

 2x(x – 3) – (2x – 5)(x + 1) + 7 = 0

 2x2 – 6x – 2x2 – 3x – 5 + 7 = 0

 3x + 2 = 0

 3x = – 2

x=23 (TMĐK).

Vậy tập nghiệm của phương trình đã cho là S={23}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

∆ABC, EF // BC. Áp dụng định lý Ta-let, ta được:

AEEC=AFFB; AEAC=AFAB=EFBC.

Vậy chọn B.

Lời giải

6x4 – 5x3 – 38x2 – 5x + 6 = 0 (1)

* Xét x = 0 thì 6.04 – 5.03 – 38.02 – 5.0 + 6 = 6 ≠ 0.

Do đó x = 0 không phải là nghiệm của phương trình (1).

* Xét x ≠ 0: chia cả hai vế của phương trình (1) cho x2, ta được:

6x25x385x+6x2=0

(6x2+6x2)(5x+5x)38=0

6(x2+1x2)5(x+1x)38=0 (2)

Đặt t=x+1x t2=(x+1x)2=x2+1x2+2t2=(x+1x)2=x2+1x2+2

x2+1x2=t22.

Khi đó, phương trình (2) tương đương:

6(t2 – 2) – 5t – 38 = 0

 6t2 – 12 – 5t – 38 = 0

 6t2 – 5t – 50 = 0

 6t2 + 15t – 20t – 50 = 0

 (6t2 + 15t) – (20t + 50) = 0

 3t(2t + 5) – 10(2t + 5) = 0

 (2t + 5) (3t – 10) = 0

 2t + 5 = 0 hoặc 3t – 10 = 0

t=52 hoặc t=103.

+) Với t=52 thì x+1x=52 x+52+1x=0

2x2 + 5x + 2 = 0

2x2 + 4x + x + 2 = 0

2x(x + 2) + (x + 2) = 0

(x + 2) (2x + 1) = 0

x + 2 = 0 hoặc 2x + 1 = 0

x = 2 (TM) hoặc x=12 (TM).

Do đó x = 2; x=12 là nghiệm của phương trình (1).

+) Với t=103 thì x+1x=103x103+1x=0

 3x2 – 10x + 3 = 0

 3x2 – 9x – x + 3 = 0

 3x(x – 3) – (x – 3) = 0

 (x – 3)(3x – 1) = 0

 x – 3 = 0 hoặc 3x – 1 = 0

 x = 3 hoặc x=13.

Do đó x = 3; x=13 là nghiệm của phương trình (1).

Vậy tập nghiệm của phương trình (1) là S={2;  12;  3;  13}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP