Câu hỏi:

23/06/2022 1,373

Cho hình lập phương ABCD.A'B'C'D'. Gọi M, N, P lần lượt là trung điểm của các cạnh AB,AD,C'D'.
c (ảnh 1)

Cosin của góc giữa hai đường thẳng MN, CP bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Đặt AD = 2a, gọi Q là trung điểm B'C' thì PQ//B'D'//MN do đó MN;CP^=PQ;CP^

Ta có PQ=B'D'2=2a22=a2

CQ=CP=2a2+a2=a5

Do đó cos CPQ^=PQ2+PC2CQ22.PQ.PC=110

Vậy cos MN;CP^=110.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D

Theo quy tắc hình hộp ta có BA+BC+BB'=BD'.

Câu 2

Lời giải

Chọn A

Vì G là trọng tâm của tam giác BCD nên ta có AB+AC+AD=3AG.

Suy ra AG=13x+y+z.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP