Câu hỏi:

23/06/2022 4,737

Cho tam giác ABC vuông tại A, AB = 9 cm, BC = 15 cm. Trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE.

a) Chứng minh rằng ΔABC=ΔAEC.

b) Vẽ đường trung tuyến BH của ΔBEC cắt cạnh AC tại M. Chứng minh M là trọng tâm của ΔBEC và tính độ dài đoạn CM.

c) Từ A vẽ đường thẳng song song với EC, đường thẳng này cắt cạnh BC tại K. Chứng minh rằng ba điểm E, M, K thẳng hàng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác ABC vuông tại A, AB = 9 cm, BC = 15 cm. Trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE. a) Chứng minh rằng tam giác ABC= tam giác AEC  b) Vẽ đường trung tuyến BH của   cắt cạnh AC tại M. Chứng minh M là trọng tâm của   và tính độ dài đoạn CM. c) Từ A vẽ đường thẳng song song với EC, đường thẳng này cắt cạnh BC tại K. Chứng minh rằng ba điểm E, M, K thẳng hàng. (ảnh 1)

a) Xét ΔABC vuông tại A và ΔAEC vuông tại A có:

AB = AE (theo giả thiết)

AC chung

ΔABC=ΔAEC (2 cạnh góc vuông)

b) Do A là trung điểm của BE nên CA là đường trung tuyến ứng của ΔBEC.

Xét ΔBEC có CA và BH là hai đường trung tuyến cắt nhau tại M.

Do đó M là trọng tâm của ΔBEC

Do đó CM = 23CA.

 Áp dụng định lý Pytago vào ΔABC vuông tại A:

AB2 + AC2 = BC2

 92 + AC2 = 152

 AC2 = 225 - 81

 AC2 = 144

 AC = 12 cm

Khi đó CM = 23CA = 23.12 = 8 cm.

Vậy CM = 8 cm.

c) Trên tia đối của tia KA lấy điểm N sao cho KN = KA.

Do ΔABC=ΔAEC (2 cạnh góc vuông) nên BC = EC (2 cạnh tương ứng) và KCA^=ACE^ (2 góc tương ứng).

ACB^=ACE^.

Do AK // EC nên KAC^=ACE^ (2 góc so le trong)

Do đó KCA^=KAC^.

ΔKAC KCA^=KAC^ nên ΔKAC cân tại K.

Do đó KA = KC.

Mà KA = KN = 12 AN nên KA = KN = KC = 12 AN.

ΔACN có KA = KN = KC = 12 AN nên ΔACN vuông tại C.

Xét ΔACN vuông tại C và ΔCAE vuông tại A:

NAC^=ECA^ (chứng minh trên).

AC chung.

ΔACN=ΔCAE (góc nhọn - cạnh góc vuông).

 AN = CE (2 cạnh tương ứng).

Mà EC = BC nên AN = BC.

Mà AN = 2AK nên BC = 2AK.

Lại có AK = KC nên BC = 2KC.

Do đó K là trung điểm của BC.

ΔBEC có M là trọng tâm, lại có K là trung điểm của BC nên E, M, K thẳng hàng.

Vậy E, M, K thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm nghiệm của các đa thức sau:

a) M = 2x - 12.

b) N = (x + 5)(4x2 - 1).

c) P = 9x3 - 25x.

Xem đáp án » 23/06/2022 1,044

Câu 2:

Bậc của đa thức A = x2y4 - x2y5 - 8x6 + 202118 là:

Xem đáp án » 22/06/2022 983

Câu 3:

Cho ba số thực x, y, z thỏa mãn x(x2 + y) - yz = 0.

Biết rằng trong ba số đó có một số bằng 0, một số âm, một số dương. Hãy chỉ rõ số nào bằng 0, số nào âm, số nào dương.

Xem đáp án » 23/06/2022 965

Câu 4:

Cho tam giác ABC có B^ tù, A^>C^. Khẳng định nào sau đây là đúng?

Xem đáp án » 22/06/2022 873

Câu 5:

Hệ số cao nhất của đa thức P(x) = 2x3 + x4 - 8x2 + 20 là:

Xem đáp án » 22/06/2022 706

Câu 6:

Tích của hai đơn thức 12x2y2 và 6xy3 là:

Xem đáp án » 22/06/2022 699

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store