Câu hỏi:

23/06/2022 1,154

Cho tam giác ABC vuông tại A, AC > AB. Đường trung trực của AB cắt BC tại I.

a) Chứng minh rằng ΔAIB,ΔAIC là các tam giác cân.

b) Từ I kẻ đường thẳng d vuông góc với BC, cắt tia BA và AC tại M và N; tia BN cắt CM tại E. Chứng minh rằng EBMC.

c) Chứng minh rằng các đường thẳng EA và BC song song với nhau.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác ABC vuông tại A, AC > AB. Đường trung trực của AB cắt BC tại I. a) Chứng minh rằng  Tam giác AIB, tam giác AIC là các tam giác cân. b) Từ I kẻ đường thẳng d vuông góc với BC, cắt tia BA và AC tại M và N; tia BN cắt CM tại E. Chứng minh rằng EB vuông góc với MC  c) Chứng minh rằng các đường thẳng EA và BC song song với nhau. (ảnh 1)

a) Do I nằm trên đường trung trực của AB nên AI = BI.

ΔAIB có AI = BI nên ΔAIB cân tại I.

Do đó IAB^=IBA^.

Lại có: IAB^+IAC^=90°; IBA^+ICA^=90° nên IAC^=ICA^.

ΔAIC IAC^=ICA^ nên ΔAIC cân tại I.

b) Xét ΔMBC CAMB; MIBC.

Mà CA cắt MI tại N nên N là trực tâm của ΔMBC.

Do đó BNMC hay BEMC.

c) ΔMBCcó MI vừa là đường trung tuyến, vừa là đường cao nên ΔMBC cân tại M.

Khi đó MI là đường phân giác của BMC^.

AMN^=EMN^.

Xét ΔAMN vuông tại A và ΔEMN vuông tại E có:

MN chung.

ΔAMN=ΔEMN (chứng minh trên).

ΔAMN=ΔEMN (cạnh huyền - góc nhọn).

 MA = ME (2 cạnh tương ứng).

ΔMAE có MA = ME nên ΔMAE cân tại M.

Do đó MAE^=MEA^.

Xét ΔMAE MAE^+MEA^+AME^=180°

2MAE^+AME^=180°

MAE^=180°AME^2 (1).

Do ΔMBC cân tại M nên MBC^=MCB^.

Xét ΔMBC MBC^+MCB^+BMC^=180°

2MBC^+BMC^=180°

MBC^=180°BMC^2 (2).

Từ (1) và (2) suy ra MAE^=MBC^.

Mà hai góc này ở vị trí đồng vị nên EA // BC.

Vậy hai đường thẳng EA và BC song song với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai biểu thức

f(x) = -2x4 - 3x3 + 4x4 - x2 + 5x + 3x2 + 5x3 + 6; g(x) = x4 - x3 + x2 - 5x - x3 - 2x2 + 3.

a) Thu gọn và sắp xếp đa thức f(x) và g(x) theo lũy thừa giảm dần của biến; cho biết bậc; hệ số cao nhất; hệ số tự do của mỗi đa thức.

b) Tìm các đa thức h(x) và k(x), biết:

h(x) = f(x) + g(x); k(x) = f(x) - 2g(x) - 4x2.

Xem đáp án » 23/06/2022 2,559

Câu 2:

Tính giá trị của biểu thức T = x3 - 2x2 - xy2 + 2xy + 10x + 10y

biết x + y = 2.

Xem đáp án » 23/06/2022 766

Câu 3:

Thời gian giải một bài toán của 30 học sinh được ghi lại trong bảng sau:

Giá trị (x)

5

7

9

10

12

15

 

Tần số (n)

3

4

7

9

5

2

N = 30

a) Dấu hiệu ở đây là gì? Tính số trung bình cộng của dấu hiệu.

b) Tìm mốt của dấu hiệu.

Xem đáp án » 23/06/2022 204

Câu 4:

Cho đơn thức A = (23x3y3z)(-6xy3z).

a) Thu gọn, xác định hệ số và bậc của đơn thức A.

b) Tính giá trị của đơn thức A biết x = -1; y = 1; z = 12.

Xem đáp án » 23/06/2022 202

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store