Câu hỏi:
13/07/2024 4,442
a) Hãy cho biết Bảng 6.4 có cho ta một hàm số hay không. Nếu có, tìm tập xác định và tập giá trị của hàm số đó.
Thời điểm (năm)
2013
2014
2015
2016
2017
2018
Tuổi thọ trung bình của người Việt Nam (tuổi)
73,1
73,2
73,3
73,4
73,5
73,5
Bảng 6.4 (Theo Tổng cục Thống kê)
b) Trở lại HĐ2, ta có hàm số cho bằng biểu đồ. Hãy cho biết giá trị của hàm số tại x = 2018.
c) Cho hàm số y = f(x) = – 2x2. Tính f(1); f(2) và tìm tập xác định, tập giá trị của hàm số này.
a) Hãy cho biết Bảng 6.4 có cho ta một hàm số hay không. Nếu có, tìm tập xác định và tập giá trị của hàm số đó.
Thời điểm (năm) |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
Tuổi thọ trung bình của người Việt Nam (tuổi) |
73,1 |
73,2 |
73,3 |
73,4 |
73,5 |
73,5 |
Bảng 6.4 (Theo Tổng cục Thống kê)
b) Trở lại HĐ2, ta có hàm số cho bằng biểu đồ. Hãy cho biết giá trị của hàm số tại x = 2018.
c) Cho hàm số y = f(x) = – 2x2. Tính f(1); f(2) và tìm tập xác định, tập giá trị của hàm số này.
Câu hỏi trong đề: Bài tập Bài 15. Hàm số có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ở Bảng 6.4 ta thấy, mỗi thời điểm xác định duy nhất một tuổi thọ trung bình của người Việt Nam, do đó bảng trên cho ta một hàm số.
Tập xác định của hàm số là D = {2013; 2014; 2015; 2016; 2017; 2018}.
Tập giá trị của hàm số là {73,1; 73,2; 73,3; 73,4; 73,5}.
b) Quan sát biểu đồ Hình 6.1, ta thấy tại năm 2018, mực nước biển trung bình tại Trường Sa là 242 mm.
Vậy giá trị của hàm số tại x = 2018 là 242.
c) Ta có: y = f(x) = – 2x2.
Khi đó: f(1) = – 2 . 12 = – 2; f(2) = – 2 . 22 = – 8.
Hàm số y = f(x) = – 2x2 xác định với mọi \(x \in \mathbb{R}\).
Do đó tập xác định của hàm số là D = \(\mathbb{R}\).
Vì x2 ≥ 0 với mọi \(x \in \mathbb{R}\) nên 2x2 ≥ 0 với mọi \(x \in \mathbb{R}\).
Do đó: y = – 2x2 ≤ 0 với mọi \(x \in \mathbb{R}\).
Vậy tập giá trị của hàm số là T = (– ∞; 0].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Biểu thức 2x3 + 3x + 1 có nghĩa với mọi \(x \in \mathbb{R}\).
Vậy tập xác định của hàm số là D = \(\mathbb{R}\).
b) Biểu thức \(\frac{{x - 1}}{{{x^2} - 3x + 2}}\)có nghĩa khi x2 – 3x + 2 ≠ 0 (1).
Ta có: x2 – 3x + 2 = x2 – x – 2x + 2 = x(x – 1) – 2(x – 1) = (x – 1)(x – 2).
Khi đó: (1) ⇔ (x – 1)(x – 2) ≠ 0 ⇔ x – 1 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ 1 và x ≠ 2.
Vậy tập xác định của hàm số là D = \(\mathbb{R}\backslash \left\{ {1;\,\,2} \right\}\).
c) Biểu thức \(\sqrt {x + 1} + \sqrt {1 - x} \) có nghĩa khi \(\left\{ \begin{array}{l}x + 1 \ge 0\\1 - x \ge 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\x \le 1\end{array} \right. \Leftrightarrow - 1 \le x \le 1\)
Vậy tập xác định của hàm số là D = [– 1; 1].
Lời giải
Hướng dẫn giải
a) Ta có: x + y = 1 ⇒ y = – x + 1.
Với mỗi giá trị thực của x, ta đều xác định được một và chỉ một giá trị thực của y.
Vậy trong trường hợp này y là hàm số của x.
b) y = x2
Với mỗi giá trị thực của x, ta đều xác định được một và chỉ một giá trị thực của y.
Vậy trong trường hợp này y là hàm số của x.
c) y2 = x
Ta có: với x = 1 thì y2 = 1, suy ra y = 1 hoặc y = – 1, do đó với một giá trị của x, ta xác định được 2 giá trị của y, vậy trong trường hợp này y không phải là hàm số của x.
d) x2 – y2 = 0
Suy ra: y2 = x2.
Với x = 1 ⇒ x2 = 12 = 1, suy ra y2 = 1, khi đó y = 1 hoặc y = – 1, do đó với một giá trị của x, ta xác định được 2 giá trị của y, vậy trong trường hợp này y không phải là hàm số của x.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.