Câu hỏi:
13/07/2024 2,769
Quan sát Hình 6.2 và cho biết những điểm nào sau đây nằm trên đồ thị của hàm số \(y = \frac{1}{2}{x^2}\).
(0; 0), (2; 2), (– 2; 2), (1; 2), (– 1; 2).
Nêu nhận xét về mối quan hệ giữa hoành độ và tung độ của những điểm nằm trên đồ thị.

Quan sát Hình 6.2 và cho biết những điểm nào sau đây nằm trên đồ thị của hàm số \(y = \frac{1}{2}{x^2}\).
(0; 0), (2; 2), (– 2; 2), (1; 2), (– 1; 2).
Nêu nhận xét về mối quan hệ giữa hoành độ và tung độ của những điểm nằm trên đồ thị.
Câu hỏi trong đề: Bài tập Bài 15. Hàm số có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đánh dấu các điểm có tọa độ (0; 0), (2; 2), (– 2; 2), (1; 2), (– 1; 2) lên mặt phẳng tọa độ Oxy trên Hình 6.2:

Ta thấy các điểm (0; 0), (2; 2), (– 2; 2) thuộc đồ thị hàm số \(y = \frac{1}{2}{x^2}\).
Ta có: Với hoành độ x = 0 thì y = \(\frac{1}{2}\) . 02 = 0;
Với x = 2 thì y = \(\frac{1}{2}\) . 22 = 2;
Với x = – 2 thì y = \(\frac{1}{2}\) . (– 2)2 = 2.
Vậy hoành độ và tung độ của những điểm nằm trên đồ thị thỏa mãn hàm số \(y = \frac{1}{2}{x^2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Biểu thức 2x3 + 3x + 1 có nghĩa với mọi \(x \in \mathbb{R}\).
Vậy tập xác định của hàm số là D = \(\mathbb{R}\).
b) Biểu thức \(\frac{{x - 1}}{{{x^2} - 3x + 2}}\)có nghĩa khi x2 – 3x + 2 ≠ 0 (1).
Ta có: x2 – 3x + 2 = x2 – x – 2x + 2 = x(x – 1) – 2(x – 1) = (x – 1)(x – 2).
Khi đó: (1) ⇔ (x – 1)(x – 2) ≠ 0 ⇔ x – 1 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ 1 và x ≠ 2.
Vậy tập xác định của hàm số là D = \(\mathbb{R}\backslash \left\{ {1;\,\,2} \right\}\).
c) Biểu thức \(\sqrt {x + 1} + \sqrt {1 - x} \) có nghĩa khi \(\left\{ \begin{array}{l}x + 1 \ge 0\\1 - x \ge 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\x \le 1\end{array} \right. \Leftrightarrow - 1 \le x \le 1\)
Vậy tập xác định của hàm số là D = [– 1; 1].
Lời giải
Hướng dẫn giải
a) Ta có: x + y = 1 ⇒ y = – x + 1.
Với mỗi giá trị thực của x, ta đều xác định được một và chỉ một giá trị thực của y.
Vậy trong trường hợp này y là hàm số của x.
b) y = x2
Với mỗi giá trị thực của x, ta đều xác định được một và chỉ một giá trị thực của y.
Vậy trong trường hợp này y là hàm số của x.
c) y2 = x
Ta có: với x = 1 thì y2 = 1, suy ra y = 1 hoặc y = – 1, do đó với một giá trị của x, ta xác định được 2 giá trị của y, vậy trong trường hợp này y không phải là hàm số của x.
d) x2 – y2 = 0
Suy ra: y2 = x2.
Với x = 1 ⇒ x2 = 12 = 1, suy ra y2 = 1, khi đó y = 1 hoặc y = – 1, do đó với một giá trị của x, ta xác định được 2 giá trị của y, vậy trong trường hợp này y không phải là hàm số của x.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.