Câu hỏi:
13/07/2024 4,204a) Dựa vào đồ thị của hàm số \(y = \frac{1}{2}{x^2}\) (H.6.2), tìm x sao cho y = 8.
b) Vẽ đồ thị của các hàm số y = 2x + 1 và y = 2x2 trên cùng một mặt phẳng tọa độ.
Câu hỏi trong đề: Bài tập Bài 15. Hàm số có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Với y = 8, từ điểm 8 trên trục Oy, ta kẻ đường thẳng song song với Ox, đường thẳng này cắt đồ thị hàm số \(y = \frac{1}{2}{x^2}\) tại hai điểm, từ hai điểm đó hạ vuông góc xuống trục Ox, ta thấy hai chân đường vuông góc trên Ox là điểm 4 và – 4.
Vậy với y = 8 thì x = 4, x = – 4.
b)
+ Ta có: y = 2x + 1
Tập xác định của hàm số là \(\mathbb{R}\).
Với x = 0 thì y = 2 . 0 + 1 = 1.
Với x = 1 thì y = 2 . 1 + 1 = 3.
Do đó đồ thị hàm số y = 2x + 1 là đường thẳng đi qua 2 điểm (0; 1) và (1; 3).
+ Ta có: y = 2x2
Tập xác định của hàm số là \(\mathbb{R}\).
Bảng giá trị tương ứng của x và y
x |
0 |
1 |
– 1 |
2 |
– 2 |
y = 2x2 |
0 |
2 |
2 |
8 |
8 |
Trên mặt phẳng tọa độ, vẽ đường cong đi qua các điểm (0; 0), (1; 2), (– 1; 2), (2; 8), (– 2; 8), đường cong này chính là đồ thị của hàm số y = 2x2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Biểu thức 2x3 + 3x + 1 có nghĩa với mọi \(x \in \mathbb{R}\).
Vậy tập xác định của hàm số là D = \(\mathbb{R}\).
b) Biểu thức \(\frac{{x - 1}}{{{x^2} - 3x + 2}}\)có nghĩa khi x2 – 3x + 2 ≠ 0 (1).
Ta có: x2 – 3x + 2 = x2 – x – 2x + 2 = x(x – 1) – 2(x – 1) = (x – 1)(x – 2).
Khi đó: (1) ⇔ (x – 1)(x – 2) ≠ 0 ⇔ x – 1 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ 1 và x ≠ 2.
Vậy tập xác định của hàm số là D = \(\mathbb{R}\backslash \left\{ {1;\,\,2} \right\}\).
c) Biểu thức \(\sqrt {x + 1} + \sqrt {1 - x} \) có nghĩa khi \(\left\{ \begin{array}{l}x + 1 \ge 0\\1 - x \ge 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\x \le 1\end{array} \right. \Leftrightarrow - 1 \le x \le 1\)
Vậy tập xác định của hàm số là D = [– 1; 1].
Lời giải
Hướng dẫn giải
a) Ta có: x + y = 1 ⇒ y = – x + 1.
Với mỗi giá trị thực của x, ta đều xác định được một và chỉ một giá trị thực của y.
Vậy trong trường hợp này y là hàm số của x.
b) y = x2
Với mỗi giá trị thực của x, ta đều xác định được một và chỉ một giá trị thực của y.
Vậy trong trường hợp này y là hàm số của x.
c) y2 = x
Ta có: với x = 1 thì y2 = 1, suy ra y = 1 hoặc y = – 1, do đó với một giá trị của x, ta xác định được 2 giá trị của y, vậy trong trường hợp này y không phải là hàm số của x.
d) x2 – y2 = 0
Suy ra: y2 = x2.
Với x = 1 ⇒ x2 = 12 = 1, suy ra y2 = 1, khi đó y = 1 hoặc y = – 1, do đó với một giá trị của x, ta xác định được 2 giá trị của y, vậy trong trường hợp này y không phải là hàm số của x.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)