Câu hỏi:

25/06/2022 3,253

Xét bất phương trình log222x2m+1log2x2<0. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng 2;+.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có

     log222x2m+1log2x2<0

1+log2x22m+1log2x2<0

log22x+2log2x+12m+1log2x2<0

log22x2mlog2x1<0

Đặt t=log2x, phương trình đã cho trở thành: t22mt1<0 *.

Ta có Δ'=m2+1>0 m nên tập nghiệm của bất phương trình (*) là: tmm2+1;m+m2+1

Vì phương trình ban đầu phải có nghiệm thuộc khoảng x2;+t12;+ nên phương trình (*) phải có nghiệm t12;+.

mm2+1;m+m2+112;+.

m+m2+1>12m2+1>12m

12m<012m0m2+1>m2m+14m>12m12m>34m>34


Vậy m34;+.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc ABC = 60 độ (ảnh 1)

Kẻ AHCD1. ΔACD đều cạnh a nên H là trung điểm của CD và AH=a32.

Gọi O là trung điểm của AB. ΔSAB đều nên SOAB.

Ta có SABABCD=ABSOSAB,SOABSOABCDSOAH.

Nên AHCD,AB//CDAHABAHSOAHSABAHSA 2

Từ (1) và (2) AH là đoạn vuông góc chung của CD và SA.

Vậy dCD;SA=AH=a32

Chọn B.

Câu 2

Lời giải

Ta có 5sinx3cosx5 nên 34sinx3cosx+273y7.

M=7,m=3.

Vậy M+m=7+3=4.

Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP