Câu hỏi:
13/07/2024 34,433
Giải các bất phương trình bậc hai:
a) x2 – 1 ≥ 0;
b) x2 – 2x – 1 < 0;
c) – 3x2 + 12x + 1 ≤ 0;
d) 5x2 + x + 1 ≥ 0.
Câu hỏi trong đề: Bài tập Bài 17. Dấu của tam thức bậc hai có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Tam thức f(x) = x2 – 1 có ∆ = 02 – 4 . 1 . (– 1) = 4 > 0 nên f(x) có hai nghiệm x1 = – 1 và x2 = 1.
Mặt khác hệ số a = 1 > 0, do đó ta có bảng xét dấu sau:
x |
– ∞ – 1 1 + ∞ |
f(x) |
+ 0 – 0 + |
Tập nghiệm của bất phương trình là S = (– ∞; – 1] ∪ [1; + ∞).
b) Tam thức f(x) = x2 – 2x – 1 có ∆' = (– 1)2 – 1 . (– 1) = 2 > 0 nên f(x) có hai nghiệm x1 = 1 \( - \sqrt 2 \) và x2 = 1 + \(\sqrt 2 \).
Mặt khác hệ số a = 1 > 0, do đó ta có bảng xét dấu sau:
x |
– ∞ 1 \( - \sqrt 2 \) 1 + \[\sqrt 2 \] + ∞ |
f(x) |
+ 0 – 0 + |
Vậy tập nghiệm của bất phương trình là S =
c) Tam thức f(x) = – 3x2 + 12x + 1 có ∆' = 62 – (– 3) . 1 = 39 > 0 nên f(x) có hai nghiệm \({x_1} = \frac{{6 - \sqrt {39} }}{3}\) và \({x_2} = \frac{{6 + \sqrt {39} }}{3}\).
Mặt khác hệ số a = – 3 < 0, do đó ta có bảng xét dấu sau:
x |
– ∞ \(\frac{{6 - \sqrt {39} }}{3}\) \(\frac{{6 + \sqrt {39} }}{3}\) + ∞ |
f(x) |
– 0 + 0 – |
Vậy tập nghiệm của bất phương trình là S = \(\left( { - \infty ;\frac{{6 - \sqrt {39} }}{3}} \right] \cup \left[ {\frac{{6 + \sqrt {39} }}{3}; + \infty } \right)\).
d) Tam thức f(x) = 5x2 + x + 1 có ∆ = 12 – 4 . 5 . 1 = – 19 < 0 và hệ số a = 5 > 0 nên f(x) luôn dương (cùng dấu a) với mọi \(x \in \mathbb{R}\).
Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có tam thức f(x) = x2 + (m + 1)x + 2m + 3 có ∆ = (m + 1)2 – 4 . 1 . (2m + 3) = m2 + 2m + 1 – 8m – 12 = m2 – 6m – 11.
Lại có hệ số a = 1 > 0.
Để f(x) luôn dương (cùng dấu hệ số a) với mọi \(x \in \mathbb{R}\) thì ∆ < 0.
⇔ m2 – 6m – 11 < 0.
Xét tam thức h(m) = m2 – 6m – 11 có ∆'m = (– 3)2 – 1 . (– 11) = 20 > 0 nên h(m) có hai nghiệm m1 = \(3 - \sqrt {20} = 3 - 2\sqrt 5 \) và m2 = \(3 + \sqrt {20} = 3 + 2\sqrt 5 \).
Mặt khác ta có hệ số am = 1 > 0, do đó ta có bảng xét dấu sau:
m |
– ∞ \(3 - 2\sqrt 5 \) \(3 + 2\sqrt 5 \) + ∞ |
h(m) |
+ 0 – 0 + |
Do đó, h(m) < 0 với mọi m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\).
Hay ∆ < 0 với mọi m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\).
Vậy m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\) thì tam thức bậc hai đã cho luôn dương với mọi \(x \in \mathbb{R}\).
Lời giải
Độ cao của vật so với mặt đất được mô tả bởi công thức
h(t) = h0 + v0t – gt2,
trong đó v0 = 20 m/s là vận tốc ban đầu của vật, t là thời gian chuyển động tính bằng giây, g là gia tốc trọng trường (thường lấy g ≈ 9,8 m/s2) và độ cao h(t) tính bằng mét.
Khi đó ta có: h(t) = 320 + 20t – . 9,8 . t2 hay h(t) = – 4,9t2 + 20t + 320, đây là một hàm số bậc hai.
Vật cách mặt đất không quá 100 m khi và chỉ khi h(t) ≤ 100, tức là – 4,9t2 + 20t + 320 ≤ 100 hay tương đương 4,9t2 – 20t – 220 ≥ 0 (1).
Xét tam thức f(t) = 4,9t2 – 20t – 220 có ∆' = (– 10)2 – 4,9 . (– 220) = 1 178 > 0 nên f(t) có hai nghiệm và .
Mà hệ số af = 1 > 0 nên ta có bảng xét dấu f(t):
t |
– ∞ + ∞ |
f(t) |
+ 0 – 0 + |
Suy ra bất phương trình (1) có nghiệm t ≤ hoặc t ≥ .
Mà thời gian t > 0 nên t ≥ ≈ 9,05.
Vậy sau ít nhất khoảng 9,05 giây thì vật đó cách mặt đất không quá 100 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.