Câu hỏi:

13/07/2024 20,836

Giải các bất phương trình bậc hai:

a) x2 – 1 ≥ 0;

b) x2 – 2x – 1 < 0;

c) – 3x2 + 12x + 1 ≤ 0;

d) 5x2 + x + 1 ≥ 0.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Tam thức f(x) = x2 – 1 có ∆ = 02 – 4 . 1 . (– 1) = 4 > 0 nên f(x) có hai nghiệm x1 = – 1 và x2 = 1.

Mặt khác hệ số a = 1 > 0, do đó ta có bảng xét dấu sau:

x

– ∞                  – 1                      1                     + ∞

f(x)

             +           0                    0            +

 

Tập nghiệm của bất phương trình là S = (– ; – 1] [1; + ).

b) Tam thức f(x) = x2 – 2x – 1 có ∆' = (– 1)2 – 1 . (– 1) = 2 > 0 nên f(x) có hai nghiệm x1 = 1 \( - \sqrt 2 \) và x2 = 1 + \(\sqrt 2 \).

Mặt khác hệ số a = 1 > 0, do đó ta có bảng xét dấu sau:

x

– ∞                1 \( - \sqrt 2 \)                   1 + \[\sqrt 2 \]                     + ∞

f(x)

             +            0                        0                +

Vậy tập nghiệm của bất phương trình là S = 12;1+2

c) Tam thức f(x) = – 3x2 + 12x + 1 có ∆' = 62 – (– 3) . 1 = 39 > 0 nên f(x) có hai nghiệm \({x_1} = \frac{{6 - \sqrt {39} }}{3}\) và \({x_2} = \frac{{6 + \sqrt {39} }}{3}\).

Mặt khác hệ số a = – 3 < 0, do đó ta có bảng xét dấu sau:

x

– ∞                \(\frac{{6 - \sqrt {39} }}{3}\)                   \(\frac{{6 + \sqrt {39} }}{3}\)                  + ∞

f(x)

                          0              +             0                

Vậy tập nghiệm của bất phương trình là S = \(\left( { - \infty ;\frac{{6 - \sqrt {39} }}{3}} \right] \cup \left[ {\frac{{6 + \sqrt {39} }}{3}; + \infty } \right)\).

d) Tam thức f(x) = 5x2 + x + 1 có ∆ = 12 – 4 . 5 . 1 = – 19 < 0 và hệ số a = 5 > 0 nên f(x) luôn dương (cùng dấu a) với mọi \(x \in \mathbb{R}\).

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi \(x \in \mathbb{R}\):

x2 + (m + 1)x + 2m + 3.

Xem đáp án » 13/07/2024 27,672

Câu 2:

Một vật được ném theo phương thẳng đứng xuống dưới từ độ cao 320 m với vận tốc ban đầu v0 = 20 m/s. Hỏi sau ít nhất bao nhiêu giây, vật đó cách mặt đất không quá 100 m? Giả thiết rằng sức cản của không khí là không đáng kể?

Xem đáp án » 13/07/2024 23,702

Câu 3:

Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t) = – 4,9t2 + 20t + 1, ở độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Trong khoảng thời điểm nào trong quá trình bay của nó, quả bóng sẽ ở độ cao trên 5 m so với mặt đất?

Xem đáp án » 13/07/2024 15,311

Câu 4:

B. Bài tập

Xét dấu các tam thức bậc hai sau:

a) 3x2 – 4x + 1;

b) x2 + 2x + 1;

c) – x2 + 3x – 2;

d) – x2 + x – 1.

Xem đáp án » 13/07/2024 13,981

Câu 5:

Xét đường tròn đường kính AB = 4 và một điểm M di chuyển trên đoạn AB, đặt AM = x (H.6.19). Xét hai đường tròn đường kính AM và MB. Kí hiệu S(x) diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ. Xác định các giá trị của x để diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ.
Media VietJack

Xem đáp án » 13/07/2024 13,224

Câu 6:

Giải các bất phương trình bậc hai sau:

a) – 5x2 + x – 1 ≤ 0;

b) x2 – 8x + 16 ≤ 0;

c) x2 – x – 6 > 0.

Xem đáp án » 13/07/2024 5,057

Bình luận


Bình luận