Câu hỏi:
13/07/2024 2,941Xét vị trí tương đối giữa các cặp đường thẳng sau:
a) ∆1: x + 4y – 3 = 0 và ∆2: x – 4y – 3 = 0;
b) ∆1: x + 2y – \(\sqrt 5 \)= 0 và ∆2: 2x + 4y – \(3\sqrt 5 \) = 0.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Xét hệ \(\left\{ \begin{array}{l}x + 4y - 3 = 0\,\,\,\,\,\,\left( 1 \right)\\x - 4y - 3 = 0\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Lấy (1) cộng vế theo vế với (2) ta được: 2x – 6 = 0 ⇔ x = 3.
Thay x = 3 vào (1) ta được: 3 + 4y – 3 = 0 ⇔ 4y = 0 ⇔ y = 0.
Do đó hệ phương trình trên có nghiệm duy nhất (x; y) = (3; 0).
Vậy hai đường thẳng ∆1 và ∆2 cắt nhau tại điểm M(3; 0).
b) Đường thẳng ∆1: x + 2y –\(\sqrt 5 \)= 0 có vectơ pháp tuyến là \({\overrightarrow n _1} = \left( {1;\,\,2} \right)\).
Đường thẳng ∆2: 2x + 4y – \(3\sqrt 5 \) = 0 có vectơ pháp tuyến là \({\overrightarrow n _2} = \left( {2;\,\,4} \right)\).
Ta thấy: \({\overrightarrow n _2} = 2{\overrightarrow n _1}\) nên hai vectơ này cùng phương.
Do đó hai đường thẳng ∆1 và ∆2 song song hoặc trùng nhau.
Mặt khác, ta lại có điểm A(\(\sqrt 5 \); 0) thuộc đường thẳng ∆1 nhưng không thuộc đường thẳng ∆2 nên hai đường thẳng này không trùng nhau.
Vậy hai đường thẳng ∆1 và ∆2 song song với nhau.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Độ dài đường cao kẻ từ đỉnh của tam giác ABC chính là khoảng cách từ điểm A đến đường thẳng BC.
Ta có: \(\overrightarrow {BC} = \left( { - 2 - 3; - 1 - 2} \right) = \left( { - 5; - 3} \right)\).
Chọn vectơ chỉ phương của đường thẳng BC là \(\overrightarrow u = - \overrightarrow {BC} = \left( {5;\,3} \right)\).
Suy ra vectơ pháp tuyến của đường thẳng BC là \(\overrightarrow n = \left( {3;\,\, - 5} \right)\).
Đường thẳng BC đi qua điểm B(3; 2) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;\,\, - 5} \right)\), do đó phương trình đường thẳng BC là: 3(x – 3) – 5(y – 2) = 0 hay 3x – 5y + 1 = 0.
Khi đó khoảng cách từ A đến BC là:
d(A, BC) = \(\frac{{\left| {3.1 - 5.0 + 1} \right|}}{{\sqrt {{3^2} + {5^2}} }} = \frac{4}{{\sqrt {34} }} = \frac{{2\sqrt {34} }}{{17}}\) .
Vậy độ dài đường cao kẻ từ đỉnh A của tam giác ABC là h = \(\frac{{2\sqrt {34} }}{{17}}\).
b) Ta có: BC = \(\left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 3} \right)}^2}} = \sqrt {34} \).
Diện tích tam giác ABC là:
S = \(\frac{1}{2}h.BC\)\( = \frac{1}{2}.\frac{{2\sqrt {34} }}{{17}}.\sqrt {34} = 2\) (đvdt).
Vậy diện tích tam giác ABC là 2 đvdt.
Lời giải
Hướng dẫn giải
a) Đặt hệ trục tọa độ như hình vẽ sau:
Vì B trùng với gốc tọa độ O nên B có tọa độ là (0; 0).
Vì ABCD là hình chữ nhật nên CD = AB = 12 m, BC = AD = 15 m.
Điểm A thuộc trục Oy và có AO = AB = 12 m nên A có tọa độ là (0; 12).
Điểm C thuộc trục Ox và có CO = CB = 15 m nên C có tọa độ là (15; 0).
Ta có: DC ⊥ Ox (do DC ⊥ BC), DA ⊥ Oy (do DA ⊥ AB) và DC = 12 m, DA = 15 m nên điểm D có tọa độ là (15; 12).
Từ E kẻ EH vuông góc với BC, H thuộc BC nên EH = AB = 12 m, lại có AE = 5 m, do đó điểm E có tọa độ là (5; 12).
Từ F kẻ FJ vuông góc với AB, J thuộc AB nên FJ = AD = 15 m, lại có CF = 6 m, do đó điểm F có tọa độ là (15; 6).
Vậy A(0; 12), B(0; 0), C(15; 0), D(15; 12), E(5; 12), F(15; 6).
Ta có: \[\overrightarrow {EF} = \left( {15 - 5;6 - 12} \right) = \left( {10; - 6} \right)\].
Chọn vectơ \(\overrightarrow u = \frac{1}{2}\overrightarrow {EF} = \left( {5; - 3} \right)\) làm vectơ chỉ phương của đường thẳng EF thì vectơ pháp tuyến của đường thẳng EF là \(\overrightarrow n = \left( {3;\,5} \right)\).
Đường thẳng EF đi qua điểm E(5; 12) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,5} \right)\), do đó phương trình đường thẳng EF là: 3(x – 5) + 5(y – 12) = 0 hay 3x + 5y – 75 = 0.
b) Áp dụng công thức tính khoảng cách, ta có khoảng cách từ B đến EF là:
\(d\left( {B,\,EF} \right) = \frac{{\left| {3.0 + 5.0 - 75} \right|}}{{\sqrt {{3^2} + {5^2}} }} = \frac{{75}}{{\sqrt {34} }}\)≈ 12,9 m.
Khoảng cách từ B đến EF là đường ngắn nhất từ B nơi Nam đứng đến EF, lưỡi câu có thể quăng xa 10,7 m và 10,7 m < 12,9 m nên lưỡi câu không thể rơi vào vị trí nuôi vịt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)