Câu hỏi:

13/07/2024 6,930

Tính góc giữa các cặp đường thẳng sau:

a) ∆1: \(\sqrt 3 x\) + y – 4 = 0 và ∆2: x + \(\sqrt 3 y\) + 3 = 0;

b) d1: \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 + 4t\end{array} \right.\) và d2: \(\left\{ \begin{array}{l}x = 3 + s\\y = 1 - 3s\end{array} \right.\)                 (t, s là các tham số).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Vectơ pháp tuyến của đường thẳng ∆1: \(\sqrt 3 x\) + y – 4 = 0 là \(\overrightarrow {{n_1}} = \left( {\sqrt 3 ;\,\,1} \right)\) và của ∆2: x + \(\sqrt 3 y\) + 3 = 0 là \(\overrightarrow {{n_2}} = \left( {1;\,\sqrt 3 } \right)\).

Gọi φ là góc giữa hai đường thẳng ∆1 và ∆2. Ta có:

cosφ = \(\left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right|\) \( = \frac{{\left| {\overrightarrow {{n_1}} .\,\,\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\,\,\left| {\overrightarrow {{n_2}} } \right|}}\)\( = \frac{{\left| {\sqrt 3 .1 + 1.\sqrt 3 } \right|}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {1^2}} .\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }} = \frac{{2\sqrt 3 }}{{2.2}} = \frac{{\sqrt 3 }}{2}\).

Do đó, góc giữa ∆1 và ∆2 là φ = 30°.

b) Vectơ chỉ phương của đường thẳng d1 là \(\overrightarrow {{u_1}} = \left( {2;\,\,4} \right)\), của đường thẳng d2 là \(\overrightarrow {{u_2}} = \left( {1;\, - 3} \right)\).

Suy ra vectơ pháp tuyến của đường thẳng d1 là \(\overrightarrow {{n_1}} = \left( {4; - 2} \right)\), của đường thẳng d2 là \(\overrightarrow {{n_2}} = \left( {3;\,1} \right)\).

Gọi α là góc giữa hai đường thẳng d1 và d2. Ta có:

cosα = \(\left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right|\) \( = \frac{{\left| {\overrightarrow {{n_1}} .\,\,\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\,\,\left| {\overrightarrow {{n_2}} } \right|}}\)\( = \frac{{\left| {4.3 + \left( { - 2} \right).1} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{3^2} + {1^2}} }} = \frac{{10}}{{\sqrt {20} .\sqrt {10} }} = \frac{{\sqrt 2 }}{2}\).

Do đó, góc giữa d1 và d2 là α = 45°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Độ dài đường cao kẻ từ đỉnh của tam giác ABC chính là khoảng cách từ điểm A đến đường thẳng BC.

Ta có: \(\overrightarrow {BC} = \left( { - 2 - 3; - 1 - 2} \right) = \left( { - 5; - 3} \right)\).

Chọn vectơ chỉ phương của đường thẳng BC là \(\overrightarrow u = - \overrightarrow {BC} = \left( {5;\,3} \right)\).

Suy ra vectơ pháp tuyến của đường thẳng BC là \(\overrightarrow n = \left( {3;\,\, - 5} \right)\).

Đường thẳng BC đi qua điểm B(3; 2) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;\,\, - 5} \right)\), do đó phương trình đường thẳng BC là: 3(x – 3) – 5(y – 2) = 0 hay 3x – 5y + 1 = 0.

Khi đó khoảng cách từ A đến BC là:

d(A, BC) = \(\frac{{\left| {3.1 - 5.0 + 1} \right|}}{{\sqrt {{3^2} + {5^2}} }} = \frac{4}{{\sqrt {34} }} = \frac{{2\sqrt {34} }}{{17}}\) .

Vậy độ dài đường cao kẻ từ đỉnh A của tam giác ABC là h = \(\frac{{2\sqrt {34} }}{{17}}\).

b) Ta có: BC = \(\left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 3} \right)}^2}} = \sqrt {34} \).

Diện tích tam giác ABC là:

S = \(\frac{1}{2}h.BC\)\( = \frac{1}{2}.\frac{{2\sqrt {34} }}{{17}}.\sqrt {34} = 2\) (đvdt).

Vậy diện tích tam giác ABC là 2 đvdt.

Lời giải

Hướng dẫn giải

a) Đặt hệ trục tọa độ như hình vẽ sau:

Media VietJack

Vì B trùng với gốc tọa độ O nên B có tọa độ là (0; 0).

Vì ABCD là hình chữ nhật nên CD = AB = 12 m, BC = AD = 15 m.

Điểm A thuộc trục Oy và có AO = AB = 12 m nên A có tọa độ là (0; 12).

Điểm C thuộc trục Ox và có CO = CB = 15 m nên C có tọa độ là (15; 0).

Ta có: DC Ox (do DC BC), DA Oy (do DA AB) và DC = 12 m, DA = 15 m nên điểm D có tọa độ là (15; 12).

Từ E kẻ EH vuông góc với BC, H thuộc BC nên EH = AB = 12 m, lại có AE = 5 m, do đó điểm E có tọa độ là (5; 12).

Từ F kẻ FJ vuông góc với AB, J thuộc AB nên FJ = AD = 15 m, lại có CF = 6 m, do đó điểm F có tọa độ là (15; 6).

Vậy A(0; 12), B(0; 0), C(15; 0), D(15; 12), E(5; 12), F(15; 6).

Ta có: \[\overrightarrow {EF} = \left( {15 - 5;6 - 12} \right) = \left( {10; - 6} \right)\].

Chọn vectơ \(\overrightarrow u = \frac{1}{2}\overrightarrow {EF} = \left( {5; - 3} \right)\) làm vectơ chỉ phương của đường thẳng EF thì vectơ pháp tuyến của đường thẳng EF là \(\overrightarrow n = \left( {3;\,5} \right)\).

Đường thẳng EF đi qua điểm E(5; 12) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,5} \right)\), do đó phương trình đường thẳng EF là: 3(x – 5) + 5(y – 12) = 0 hay 3x + 5y – 75 = 0.

b) Áp dụng công thức tính khoảng cách, ta có khoảng cách từ B đến EF là:

\(d\left( {B,\,EF} \right) = \frac{{\left| {3.0 + 5.0 - 75} \right|}}{{\sqrt {{3^2} + {5^2}} }} = \frac{{75}}{{\sqrt {34} }}\)≈ 12,9 m.

Khoảng cách từ B đến EF là đường ngắn nhất từ B nơi Nam đứng đến EF, lưỡi câu có thể quăng xa 10,7 m và 10,7 m < 12,9 m nên lưỡi câu không thể rơi vào vị trí nuôi vịt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay