Câu hỏi:
12/07/2024 7,435B – Tự luận
Trong mặt phẳng tọa độ, cho A(1; – 1), B(3; 5), C(– 2; 4). Tính diện tích tam giác ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Độ dài đường cao từ đỉnh A đến BC chính bằng khoảng cách từ A đến đường thẳng BC, do đó diện tích của tam giác ABC bằng nửa tích khoảng cách từ A đến BC với BC.
Ta viết phương trình đường thẳng BC: có vectơ chỉ phương là \(\overrightarrow {BC} = \left( { - 2 - 3;4 - 5} \right) = \left( { - 5; - 1} \right)\) và đi qua B(3; 5).
Suy ra vectơ pháp tuyến của đường thẳng BC là: \(\overrightarrow n = \left( {1;\, - 5} \right)\).
Do đó, phương trình đường thẳng BC là: 1(x – 3) – 5(y – 5) = 0 hay x – 5y + 22 = 0.
Áp dụng công thức khoảng cách ta có: d(A; BC) = \(\frac{{\left| {1 - 5.\left( { - 1} \right) + 22} \right|}}{{\sqrt {{1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{{14\sqrt {26} }}{{13}}\).
Độ dài đoạn BC là: BC = \(\sqrt {{{\left( {3 - \left( { - 2} \right)} \right)}^2} + {{\left( {5 - 4} \right)}^2}} = \sqrt {26} \).
Vậy diện tích tam giác ABC là: SABC =\(\frac{1}{2}\)d(A; BC) . BC = \(\frac{1}{2}.\frac{{14\sqrt {26} }}{{13}}.\sqrt {26} = 14\) (đvdt).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình nào sau đây là phương trình chính tắc của đường hypebol?
Câu 2:
Câu 3:
Trong mặt phẳng tọa độ, cho hai điểm A(– 1; 0) và B(3; 1).
a) Viết phương trình đường tròn tâm A và đi qua B.
b) Viết phương trình tổng quát của đường thẳng AB.
c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB.
Câu 4:
a) Tìm tọa độ tâm I và bán kính R của (C).
b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.
Câu 5:
Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của A1 nhỏ hơn của A2).
b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì x ≤ − a, nếu điểm M(x; y) thuộc nhánh nằm bên phải trục tung của hypebol thì x ≥ a.
c) Tìm các điểm M1, M2 tương ứng thuộc cách nhánh bên trái, bên phải trục tung của hypebol để M1M2 nhỏ nhất.
Câu 6:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\left( {a > b > 0} \right)\).
a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2, B1B2.
b) Xét một điểm bất kì M(x0; y0) thuộc (E).
Chứng minh rằng, b2 ≤ x02 + y02 ≤ a2 và b ≤ OM ≤ a.
Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b.
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!