Câu hỏi:
11/07/2024 5,632Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của A1 nhỏ hơn của A2).
b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì x ≤ − a, nếu điểm M(x; y) thuộc nhánh nằm bên phải trục tung của hypebol thì x ≥ a.
c) Tìm các điểm M1, M2 tương ứng thuộc cách nhánh bên trái, bên phải trục tung của hypebol để M1M2 nhỏ nhất.
Câu hỏi trong đề: Bài tập Cuối chương 7 có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Hướng dẫn giải
a) A1 thuộc trục hoành nên y = 0, lại có A1 thuộc hypebol, do đó ta có: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{0^2}}}{{{b^2}}} = 1\)
⇔ x2 = a2 ⇔ x = ± a
Do hoành độ của A1 nhỏ hơn hoành độ của A2 nên ta xác định được tọa độ của hai điểm A1 và A2 là: A1(− a; 0) và A2(a; 0).
b) Điểm M(x; y) thuộc hypebol nên ta có: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
Ta cần chứng minh: x2 ≥ a2 thì yêu cầu của bài toán được giải quyết.
Giả sử: x2 ≥ a2 \( \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} \ge 1\) (chia cả 2 vế cho a2).
Vì \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên \(\frac{{{x^2}}}{{{a^2}}} = 1 + \frac{{{y^2}}}{{{b^2}}} \ge 1\) (do \(\frac{{{y^2}}}{{{b^2}}} \ge 0\))
Do đó: \(\frac{{{x^2}}}{{{a^2}}} \ge 1\) luôn đúng.
Suy ra x2 ≥ a2.
+) Nếu M thuộc nhánh bên trái trục tung của hypebol thì hoành độ x < 0 mà x2 ≥ a2 nên x ≤ − a.
+) Nếu M thuộc nhánh bên phải trục tung của hypebol thì hoành độ x > 0 mà x2 ≥ a2 nên x ≥ a.
c) Gọi điểm M1(x1; y1) thuộc nhánh bên trái trục tung của hypebol nên hoành độ x1 < 0, M2(x2; y2) thuộc nhánh bên phải trục tung của hypebol nên hoành độ x2 > 0.
Theo câu b ta có: x1 ≤ − a và x2 ≥ a nên |x1| + |x2| ≥ a + a = 2a.
Do x1 < 0 và x2 > 0 nên x2 − x1 = |x2| + |x1| ≥ a + a = 2a.
Ta có: M1M2 = \(\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \); A1A2 = \(\sqrt {{{\left( {a - \left( { - a} \right)} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \sqrt {{{\left( {2a} \right)}^2}} \)
Lại có: (x2 – x1)2 + (y2 – y1)2 ≥ (|x2| + |x1|)2 + 0 ≥ (2a)2.
Nên (M1M2)2 ≥ (A1A2)2
Suy ra M1M2 ≥ A1A2.
Dấu "=" xảy ra khi và chỉ khi M1 trùng A1 và M2 trùng A2.
Vậy để M1M2 nhỏ nhất thì M1 trùng A1 và M2 trùng A2 hay M1(− a; 0) và M2(a; 0).
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
B – Tự luận
Trong mặt phẳng tọa độ, cho A(1; – 1), B(3; 5), C(– 2; 4). Tính diện tích tam giác ABC.
Câu 2:
Phương trình nào sau đây là phương trình chính tắc của đường hypebol?
Câu 3:
Câu 4:
a) Tìm tọa độ tâm I và bán kính R của (C).
b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.
Câu 5:
Trong mặt phẳng tọa độ, cho hai điểm A(– 1; 0) và B(3; 1).
a) Viết phương trình đường tròn tâm A và đi qua B.
b) Viết phương trình tổng quát của đường thẳng AB.
c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB.
Câu 6:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\left( {a > b > 0} \right)\).
a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2, B1B2.
b) Xét một điểm bất kì M(x0; y0) thuộc (E).
Chứng minh rằng, b2 ≤ x02 + y02 ≤ a2 và b ≤ OM ≤ a.
Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận