Câu hỏi:

12/07/2024 3,513

Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\left( {a > b > 0} \right)\).

a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2,  B1B2.

b) Xét một điểm bất kì M(x0; y0) thuộc (E).

Chứng minh rằng, b2 x02 + y02 a2 và b OM a.

Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a)

+) Có A1 thuộc trục hoành Ox nên y = 0, hơn nữa A1 lại thuộc (E) nên \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1\). 

 x2 = a2

x = ± a. Do đó, x=±ay=0.

Chọn A1 nằm bên trái trục Oy nên có hoành độ âm. Vậy tọa độ A1(a; 0).

Chọn A2 nằm bên phải trục Oy nên có hoành độ dương. Vậy tọa độ A2(a; 0). 

Suy ra độ dài A1A2 = \(\sqrt {{{\left( {a - \left( { - a} \right)} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \sqrt {{{\left( {2a} \right)}^2}} = 2a\) (do a > 0).

+) B1 thuộc trục tung Oy nên x = 0, hơn nữa B1 lại thuộc (E) nên \(\frac{{{0^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\). 

 y2 = b2

y = ± b. Do đó, x=0y=±b.

Chọn B1 nằm phía dưới trục Ox nên có tung độ âm. Vậy tọa độ B1(0; b).

Chọn B2 nằm phía trên trục Ox nên có tung độ dương. Vậy tọa độ B2(0; b). 

Suy ra độ dài B1B= \(\sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( {b - \left( { - b} \right)} \right)}^2}} = \sqrt {{{\left( {2b} \right)}^2}} \)= 2b (do b > 0).

Vậy A1A2 = 2a, B1B2 = 2b.

b) Vì M(x0; y0) thuộc (E) nên ta có tọa độ điểm M thỏa mãn phương trình (E), do đó:

\(\frac{{x_0^2}}{{{a^2}}} + \frac{{y_0^2}}{{{b^2}}} = 1\).

+) Giả sử b2 x02 + y02, chia cả hai vế cho b2 > 0 ta được:

\(\frac{{{b^2}}}{{{b^2}}} \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)

\( \Leftrightarrow 1 \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)

\( \Leftrightarrow \frac{{x_0^2}}{{{a^2}}} + \frac{{y_0^2}}{{{b^2}}} \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)

\( \Leftrightarrow \frac{{x_0^2}}{{{a^2}}} \le \frac{{x_0^2}}{{{b^2}}}\)

Do a > b > 0 nên a2 > b2 > 0, và x02 ≥ 0 với mọi x0 nên \(\frac{{x_0^2}}{{{a^2}}} \le \frac{{x_0^2}}{{{b^2}}}\) luôn đúng.

Vậy b2 x02 + y02.

+) Chứng minh tương tự ta được: x02 + y02 ≤ a2.

Vậy b2 x02 + y02 ≤ a2     (*).

+) Ta lại có: OM = \(\sqrt {x_0^2 + y_0^2} \)

Từ (*) ta suy ra: \(b \le \sqrt {x_0^2 + y_0^2} \le a\)

Do đó: b ≤ OM ≤ a.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình nào sau đây là phương trình chính tắc của đường hypebol?

Xem đáp án » 25/06/2022 12,172

Câu 2:

Một cột trụ hình hypebol (H.7.36), có chiều cao 6 m, chỗ nhỏ nhất ở chính giữa và rộng 0,8 m, đỉnh cột và đáy cột đều rộng 1 m. Tính độ rộng của cột ở độ cao 5 m (tính theo đơn vị mét và làm tròn tới hai chữ số sau dấu phẩy).
Media VietJack

Xem đáp án » 12/07/2024 7,810

Câu 3:

Cho đường tròn (C) có phương trình x2 + y2  4x + 6y 12 = 0.

a) Tìm tọa độ tâm I và bán kính R của (C).

b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.

Xem đáp án » 12/07/2024 5,350

Câu 4:

Trong mặt phẳng tọa độ, cho hai điểm A(– 1; 0) và B(3; 1).

a) Viết phương trình đường tròn tâm A và đi qua B.

b) Viết phương trình tổng quát của đường thẳng AB.

c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB.

Xem đáp án » 12/07/2024 5,149

Câu 5:

B – Tự luận

Trong mặt phẳng tọa độ, cho A(1; 1), B(3; 5), C(2; 4). Tính diện tích tam giác ABC.

Xem đáp án » 12/07/2024 4,839

Câu 6:

Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).

a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của Anhỏ hơn của A2).

b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì x ≤ − a, nếu điểm M(x; y) thuộc nhánh nằm bên phải trục tung của hypebol thì x ≥ a.

c) Tìm các điểm M1, M2 tương ứng thuộc cách nhánh bên trái, bên phải trục tung của hypebol để  M1M2 nhỏ nhất.

Xem đáp án » 11/07/2024 3,740

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store