Câu hỏi:
12/07/2024 8,406
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\left( {a > b > 0} \right)\).
a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2, B1B2.
b) Xét một điểm bất kì M(x0; y0) thuộc (E).
Chứng minh rằng, b2 ≤ x02 + y02 ≤ a2 và b ≤ OM ≤ a.
Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b.
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\left( {a > b > 0} \right)\).
a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2, B1B2.
b) Xét một điểm bất kì M(x0; y0) thuộc (E).
Chứng minh rằng, b2 ≤ x02 + y02 ≤ a2 và b ≤ OM ≤ a.
Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b.
Câu hỏi trong đề: Bài tập Cuối chương 7 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a)
+) Có A1 thuộc trục hoành Ox nên y = 0, hơn nữa A1 lại thuộc (E) nên \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1\).
⇔ x2 = a2
Chọn A1 nằm bên trái trục Oy nên có hoành độ âm. Vậy tọa độ A1(– a; 0).
Chọn A2 nằm bên phải trục Oy nên có hoành độ dương. Vậy tọa độ A2(a; 0).
Suy ra độ dài A1A2 = \(\sqrt {{{\left( {a - \left( { - a} \right)} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \sqrt {{{\left( {2a} \right)}^2}} = 2a\) (do a > 0).
+) B1 thuộc trục tung Oy nên x = 0, hơn nữa B1 lại thuộc (E) nên \(\frac{{{0^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
⇔ y2 = b2
Chọn B1 nằm phía dưới trục Ox nên có tung độ âm. Vậy tọa độ B1(0; – b).
Chọn B2 nằm phía trên trục Ox nên có tung độ dương. Vậy tọa độ B2(0; b).
Suy ra độ dài B1B2 = \(\sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( {b - \left( { - b} \right)} \right)}^2}} = \sqrt {{{\left( {2b} \right)}^2}} \)= 2b (do b > 0).
Vậy A1A2 = 2a, B1B2 = 2b.
b) Vì M(x0; y0) thuộc (E) nên ta có tọa độ điểm M thỏa mãn phương trình (E), do đó:
\(\frac{{x_0^2}}{{{a^2}}} + \frac{{y_0^2}}{{{b^2}}} = 1\).
+) Giả sử b2 ≤ x02 + y02, chia cả hai vế cho b2 > 0 ta được:
\(\frac{{{b^2}}}{{{b^2}}} \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)
\( \Leftrightarrow 1 \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)
\( \Leftrightarrow \frac{{x_0^2}}{{{a^2}}} + \frac{{y_0^2}}{{{b^2}}} \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)
\( \Leftrightarrow \frac{{x_0^2}}{{{a^2}}} \le \frac{{x_0^2}}{{{b^2}}}\)
Do a > b > 0 nên a2 > b2 > 0, và x02 ≥ 0 với mọi x0 nên \(\frac{{x_0^2}}{{{a^2}}} \le \frac{{x_0^2}}{{{b^2}}}\) luôn đúng.
Vậy b2 ≤ x02 + y02.
+) Chứng minh tương tự ta được: x02 + y02 ≤ a2.
Vậy b2 ≤ x02 + y02 ≤ a2 (*).
+) Ta lại có: OM = \(\sqrt {x_0^2 + y_0^2} \)
Từ (*) ta suy ra: \(b \le \sqrt {x_0^2 + y_0^2} \le a\)
Do đó: b ≤ OM ≤ a.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Chọn hệ trục tọa độ sao cho gốc tọa độ trùng với điểm chính giữa của cột trụ, trục Oy đi qua điểm chính giữa, hai bên cột lần lượt nằm về hai phía của trục Oy (như hình vẽ).
Phương trình hypebol (H) có dạng: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (với a, b > 0).
Theo bài ra ta có: A1A2 = 0,8 m; AB = EH = 1 m. Khoảng cách giữa HE và AB là 6 m.
(H) cắt trục hoành tại hai điểm A1, A2, ta xác định được tọa độ 2 điểm là: A1(− 0,4; 0) và A2(0,4; 0).
Thay tọa độ A2 vào phương trình (H) ta được: \(\frac{{{{\left( {0,4} \right)}^2}}}{{{a^2}}} - \frac{{{0^2}}}{{{b^2}}} = 1\)
Suy ra a = 0,4 (do a > 0).
Ta xác định được tọa độ điểm E là E(0,5; 3).
(H) đi qua điểm có tọa độ E(0,5; 3) nên: \(\frac{{{{\left( {0,5} \right)}^2}}}{{{{\left( {0,4} \right)}^2}}} - \frac{{{3^2}}}{{{b^2}}} = 1\).
⇔ b2 = 16 ⇒ b = 4 (do b > 0).
Vậy phương trình (H) là: \(\frac{{{x^2}}}{{{{\left( {0,4} \right)}^2}}} - \frac{{{y^2}}}{{{4^2}}} = 1\) hay \(\frac{{{x^2}}}{{0,16}} - \frac{{{y^2}}}{{16}} = 1\).
Gọi F là điểm thuộc hypebol mà cột có độ cao 5 m. Ở độ cao 5 m thì khoảng cách từ vị trí F đó đến trục hoành là 2 m, tương ứng ta có tung độ điểm F là y = 2, ta cần tìm hoành độ của F.
Thay y = 2 vào phương trình (H) ta có: \(\frac{{{x^2}}}{{0,16}} - \frac{{{2^2}}}{{16}} = 1\).
⇔ x2 = 0,2 => x ≈ 0,45.
Vậy độ rộng của cột trụ tại điểm có chiều cao bằng 5 m xấp xỉ bằng: 0,45 . 2 = 0,9 m.
Lời giải
Hướng dẫn giải
Độ dài đường cao từ đỉnh A đến BC chính bằng khoảng cách từ A đến đường thẳng BC, do đó diện tích của tam giác ABC bằng nửa tích khoảng cách từ A đến BC với BC.
Ta viết phương trình đường thẳng BC: có vectơ chỉ phương là \(\overrightarrow {BC} = \left( { - 2 - 3;4 - 5} \right) = \left( { - 5; - 1} \right)\) và đi qua B(3; 5).
Suy ra vectơ pháp tuyến của đường thẳng BC là: \(\overrightarrow n = \left( {1;\, - 5} \right)\).
Do đó, phương trình đường thẳng BC là: 1(x – 3) – 5(y – 5) = 0 hay x – 5y + 22 = 0.
Áp dụng công thức khoảng cách ta có: d(A; BC) = \(\frac{{\left| {1 - 5.\left( { - 1} \right) + 22} \right|}}{{\sqrt {{1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{{14\sqrt {26} }}{{13}}\).
Độ dài đoạn BC là: BC = \(\sqrt {{{\left( {3 - \left( { - 2} \right)} \right)}^2} + {{\left( {5 - 4} \right)}^2}} = \sqrt {26} \).
Vậy diện tích tam giác ABC là: SABC =\(\frac{1}{2}\)d(A; BC) . BC = \(\frac{1}{2}.\frac{{14\sqrt {26} }}{{13}}.\sqrt {26} = 14\) (đvdt).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.