Câu hỏi:

25/06/2022 350

Tìm nghiệm của các đa thức  

 a) R(x) = 2x + 3;            b) H(x) = (x – 1)(x + 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tìm được nghiệm của đa thức

a) R(x) = 2x + 3

Ta có: R(x) = 0 hay 2x + 3 = 0 x=32

Vậy nghiệm của đa thức R(x) là x = 32

b. H(x) = (x – 1)(x + 1)  

Ta có: H(x) = 0 hay (x – 1)(x + 1) = 0

Suy ra x – 1 = 0 hoặc x + 1 = 0

Suy ra x = 1 hoặc x = –1

Vậy nghiệm của đa thức H(x) là x = 1; x = –1.        

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Cho ABC cân tại A ( nhọn ). Tia phân giác góc của A cắt BC tại I.   a) Chứng minh AI  BC;   b) Gọi D là trung điểm của AC, M là giao điểm của BD với AI. Chứng minh rằng M là trọng tâm của tâm giác ABC;   c) Biết AB = AC = 5cm; BC = 6 cm. Tính AM. (ảnh 1)

Vẽ hình đúng và ghi GT, KL đúng. (0,5 điểm)

a) Xét tam giác AIB và tam giác AIC có:

AB = AC (tam giác ABC cân tại A)

AI: cạnh chung

 BAI^=CAI^ (AI là tia phân giác của góc A)

Do đó: Δ AIB = Δ AIC (cgc) I^1= I^2    (Hai góc tương ứng)

 Mà I^1+ I^2= 180°  (Hai góc kề bù) I^1= I^2 =900  AI   BC  . (1 điểm)

b) Ta có DA = DC (D là trung điểm của AC)

Nên BD là đường trung tuyến ứng với cạnh AC.

Trong tam giác cân ABC (cân tại A), AI là đường phân giác ứng với đáy BC

Suy ra AI cũng là đường trung tuyến

Do đó M là giao của hai đường trung tuyến AI và BD nên M là trọng tâm của tam giác ABC (Tính chất ba đường trung tuyến của tam giác) (1 điểm)

c, 

Trong tam giác cân ABC (cân tại A), AI là phân giác cũng là trung tuyến

Nên I là trung điểm của BC

 IB = IC = 12  BC

 IB = IC = 12.6   = 3 (cm)

Áp dụng định lí Py-ta-go vào tam giác vuông AIB, ta có:

AI2 = AB2 – IB2 = 52 – 32 = 16

 AI = 4 (cm)

M là trọng tâm của tam giác ABC =>   AM = 23 AI =23 . 4 =83  (cm)         

Lời giải

a) Thu gọn rồi sắp xếp theo lũy thừa giảm dần của biến:

 P(x) = x2 + 5x4 3x3 + x2 + 4x4 + 3x3 x + 5

5x4+4x4+3x3+3x3+x2+x2x+5

= 9x4 + 2x2 x + 5           

Q(x) = x 5x3 x2 x4 + 4x3 x2 + 3x 1

x4+5x3+4x3+x2x2+x+3x1

= x4 x3 2x2 + 4x 1            

b) P(x) + Q(x) = (9x4 + 2x2 x + 5) + (x4 x3 2x2 + 4x 1)

9x4+2x2x+5x4x32x2+4x1

=9x4x4x3+2x22x2+x+4x+51

= 8x4 x3 + 3x + 4                    

P(x) Q(x) = (9x4 + 2x2 x + 5) (x4 x3 2x2 + 4x 1)

9x4+2x2x+5+x4+x3+2x24x+1

9x4+x4+x3+2x2+2x2+x4x+5+1

= 10x4 + x3 + 4x2 5x + 6                   

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay