Câu hỏi:

11/07/2024 2,081

 Cho ΔABC cân tại A (A nhọn ). Tia phân giác góc của A cắt BC tại I.

 a) Chứng minh AI  BC;

 b) Gọi D là trung điểm của AC, M là giao điểm của BD với AI. Chứng minh rằng M là trọng tâm của tâm giác ABC;

 c) Biết AB = AC = 5cm; BC = 6 cm. Tính AM.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
 Cho ABC cân tại A ( nhọn ). Tia phân giác góc của A cắt BC tại I.   a) Chứng minh AI  BC;   b) Gọi D là trung điểm của AC, M là giao điểm của BD với AI. Chứng minh rằng M là trọng tâm của tâm giác ABC;   c) Biết AB = AC = 5cm; BC = 6 cm. Tính AM. (ảnh 1)

Vẽ hình đúng và ghi GT, KL đúng. (0,5 điểm)

a) Xét tam giác AIB và tam giác AIC có:

AB = AC (tam giác ABC cân tại A)

AI: cạnh chung

 BAI^=CAI^ (AI là tia phân giác của góc A)

Do đó: Δ AIB = Δ AIC (cgc) I^1= I^2    (Hai góc tương ứng)

 Mà I^1+ I^2= 180°  (Hai góc kề bù) I^1= I^2 =900  AI   BC  . (1 điểm)

b) Ta có DA = DC (D là trung điểm của AC)

Nên BD là đường trung tuyến ứng với cạnh AC.

Trong tam giác cân ABC (cân tại A), AI là đường phân giác ứng với đáy BC

Suy ra AI cũng là đường trung tuyến

Do đó M là giao của hai đường trung tuyến AI và BD nên M là trọng tâm của tam giác ABC (Tính chất ba đường trung tuyến của tam giác) (1 điểm)

c, 

Trong tam giác cân ABC (cân tại A), AI là phân giác cũng là trung tuyến

Nên I là trung điểm của BC

 IB = IC = 12  BC

 IB = IC = 12.6   = 3 (cm)

Áp dụng định lí Py-ta-go vào tam giác vuông AIB, ta có:

AI2 = AB2 – IB2 = 52 – 32 = 16

 AI = 4 (cm)

M là trọng tâm của tam giác ABC =>   AM = 23 AI =23 . 4 =83  (cm)         

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai đa thức:

   P(x) = x2 + 5x4 – 3x3 + x2 + 4x4 + 3x3 – x + 5

Q(x) = x – 5x3 – x2 – x4 + 4x3 – x2 + 3x – 1

a) Thu gọn rồi sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến;

b) Tính P(x) + Q(x) và P(x) – Q(x).

Xem đáp án » 25/06/2022 502

Câu 2:

 Trên tia phân giác góc A của tam giác ABC (AB > AC) lấy điểm M.

 Chứng minh MBMC<ABAC

Xem đáp án » 11/07/2024 280

Câu 3:

 Cho đa thức M = 6x6y + x4y3 – y7 – 4x4y3 + 10 – 5x6y + 2y7 – 2,5 

a) Thu gọn và tìm bậc của đa thức;

b) Tính giá trị của đa thức tại x = –1 và y = 1.

 

Xem đáp án » 25/06/2022 272

Câu 4:

     Điểm kiểm tra 1 tiết môn toán của lớp 7A được bạn lớp trưởng ghi lại như sau

5

8

4

8

6

6

5

7

4

3

6

7

7

3

8

6

7

6

5

9

7

9

7

4

4

7

10

6

7

5

4

7

6

5

2

8

 

a) Dấu hiệu ở đây là gì? Số các giá trị là bao nhiêu?

b) Lập bảng “tần số” và tìm Mốt của dấu hiệu;

c) Tính số trung bình cộng của dấu hiệu.

Xem đáp án » 25/06/2022 252

Câu 5:

Tìm nghiệm của các đa thức  

 a) R(x) = 2x + 3;            b) H(x) = (x – 1)(x + 1).

Xem đáp án » 25/06/2022 217

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store