Câu hỏi:

25/06/2022 614

 Cho ΔABC cân tại A (A nhọn ). Tia phân giác góc của A cắt BC tại I.

 a) Chứng minh AI  BC;

 b) Gọi M là trung điểm của AB, G là giao điểm của CM với AI. Chứng minh rằng BG là đường trung tuyến của tam giác ABC;

 c) Biết AB = AC = 15cm; BC = 18 cm. Tính GI.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

- Vẽ hình đúng và ghi GT, KL đúng. (0,5 điểm)

 Cho ABC cân tại A ( nhọn ). Tia phân giác góc của A cắt BC tại I.   a) Chứng minh AI  BC;   b) Gọi M là trung điểm của AB, G là giao điểm của CM với AI. Chứng minh rằng BG là đường trung tuyến của tam giác ABC;   c) Biết AB = AC = 15cm; BC = 18 cm. Tính GI. (ảnh 1)

a) Xét tam giác AIB và tam giác AIC có:

AB = AC (tam giác ABC cân tại A)

AI là cạnh chung

 BAI^=CAI^ (AI là tia phân giác của góc A)

 Do đó: tam giác AIB = tam giác AIC (cgc)  (Hai góc tương ứng)

 Mà I^1+ I^2= 180° (Hai góc kề bù)I^1= I^2 =900  AI   BC . (1 điểm)

b) Ta có: MA = MB (M là trung điểm của AB)

 =>  CM là đường trung tuyến ứng với cạnh AB.

Trong tam giác cân ABC (cân tại A), AI là đường phân giác ứng với đáy BC

 => AI cũng là đường trung tuyến

Do đó G là giao của hai trung tuyến AI và CM nên G là trọng tâm của tam giác ABC (Tính chất ba đường trung tuyến của tam giác)

Nên BG là đường trung tuyến của tam giác ABC.    (1 điểm)

c) Trong tam giác cân ABC (Cân tại A), AI là phân giác cũng là trung tuyến

Nên IB = IC = 12 BC  IB = IC = 9 (cm)

Áp dụng định lí Py–ta–go vào tam giác vuông AIB, ta có:

AI2 = AB2 – IB2 = 152 – 92 = 144 =>   AI = 12 (cm)

G là trọng tâm của tam giác ABC =>   GI = 13 AI = .13 12 = 4 (cm)       (0,5 điểm)                              

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) P(x) = 5x 3 có nghiệm     5x 3 = 0  x = 35     (0,5 điểm)   

b) F(x) = (x + 2)(x 1) có nghiệm    (x + 2)(x 1) = 0

 x + 2 = 0 hoặc x 1 = 0  x = 2 hoặc x = 1  (0,5 điểm)

Lời giải

 Cho đoạn thẳng AB. Gọi d là đường trung trực của AB. Trên đường thẳng d lấy điểm M bất kì. Trong mặt phẳng lấy đểm C sao cho BC < CA. a) So sánh MB + MC với CA; b) Tìm vị trí của M trên d sao cho MB + MC nhỏ nhất. (ảnh 1)

a) M thuộc đường trung trực d của AB nên MA = MB (tính chất đường trung trực của đoạn thẳng)

Suy ra MB + MC = MA + MC.

Trong tam giác MAC, ta có: MA + MC > AC.

Vậy MB + MC > AC   (0,5 điểm)

 b) Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d.

Nên A và C nằm trong hai nửa mặt phẳng bờ d khác nhau.

Do đó d cắt AC tại H.

Vậy khi M  H thì: MB + MC = HB + HC = HA + HC

                                  => MB + MC = AC

Vậy ta có MB + MC  AC

Khi M trùng với H thì HB + HC = AC.

Tức là MB + MC nhỏ nhất khi M  H là giao điểm của AC với d.  

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay