Câu hỏi:
27/06/2022 4,835Cho phương trình \(\log _3^2\left( {3x} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0\) (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Điều kiện: \(x > 0\)
Ta có: \({\log _3}^2\left( {3x} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0 \Leftrightarrow {\log _3}^2x - m{\log _3}x + m - 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\log }_3}x = 1}\\{{{\log }_3}x = m - 1}\end{array}} \right.\)
Phương trình: \({\log _3}x = 1 \Leftrightarrow x = 3 \in \left[ {\frac{1}{3};3} \right]\)
Để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\) thì phương trình:
\({\log _3}x = m - 1\) có 1 nghiệm thuộc \(\left[ {\frac{1}{3};3} \right).\)
\( \Rightarrow {\log _3}\frac{1}{3} \le {\log _3}x = m - 1 < {\log _3}3 \Leftrightarrow - 1 \le m - 1 < 1 \Leftrightarrow 0 \le m < 2 \Rightarrow m \in \left[ {0;2} \right)\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\) và \(2F\left( a \right) - 7 = 2F\left( b \right)\). Tính tích phân \(I = \int\limits_a^b {f\left( x \right)} dx.\)
Câu 2:
Cho hàm số \(f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) được cho như hình vẽ bên. Hàm số \(y = \left| {f\left( x \right) + \frac{1}{2}{x^2} - f\left( 0 \right)} \right|\) có nhiều nhất bao nhiêu điểm cực trị trong khoảng \(\left( { - 2;3} \right)\)?
Câu 3:
Cho các số thực dương a, b thỏa mãn \({\log _4}a = {\log _6}b = {\log _9}\left( {4a - 5b} \right) - 1.\) Đặt \(T = \frac{b}{a}.\) Khẳng định nào sau đây đúng?
Câu 4:
Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?
Câu 5:
Một mảnh giấy hình quạt như hình vẽ có bán kính \(AB = AC = 8\,\,cm.\) Người ta dán mép AB và AC lại với nhau để được một hình nón đỉnh A. Biết độ dài cung BC bằng \(8\pi \sqrt 3 \,\,cm,\) tính thể tích V của khối nón thu được (xem phần giấy dán không đáng kể)
Câu 6:
Tất cả các nguyên hàm của hàm số \(f\left( x \right) = {3^{ - x}}\) là
về câu hỏi!