Cho hàm số \(f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) được cho như hình vẽ bên. Hàm số \(y = \left| {f\left( x \right) + \frac{1}{2}{x^2} - f\left( 0 \right)} \right|\) có nhiều nhất bao nhiêu điểm cực trị trong khoảng \(\left( { - 2;3} \right)\)?

Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án D
Xét hàm số: \(h\left( x \right) = f\left( x \right) + \frac{1}{2}{x^2} - f\left( 0 \right).\)
Ta có \(h'\left( x \right) = f'\left( x \right) + x;h'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = - x\)
Nghiệm phương trình là hoành độ giao điểm của hai đồ thị \(y = - x\) và \(y = f'\left( x \right)\)

Dựa vào đồ thị suy ra phương trình: \(f'\left( x \right) = - x\) có ba nghiệm \(\left[ \begin{array}{l}x = - 2\\x = 0\\x = 2\end{array} \right.\)
Trên khoảng \(\left( { - 2;3} \right)\), hàm số \(h\left( x \right)\) có một điểm cực trị là\(x = 2,\) (do qua nghiệm \(x = 0,h'\left( x \right)\) không đổi dấu). Do đó đồ thị hàm số \(y = h\left( x \right)\) cắt trục hoành tối đa 2 điểm.
Suy ra hàm số \(y = \left| {h\left( x \right)} \right|\) có tối đa \(2 + 1 = 3\) điểm cực trị trong khoảng \(\left( { - 2;3} \right).\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án A
\(\int {{3^{ - x}}dx} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C.\)
Câu 2
Lời giải
Đáp án D
Ta có \(I = F\left( b \right) - F\left( a \right) = - \frac{7}{2}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.