Câu hỏi:
27/06/2022 15,732Số nghiệm của phương trình \({\log _2}\left( {x + 2} \right) + {\log _4}{\left( {x - 5} \right)^2} + {\log _{\frac{1}{2}}}8 = 0\) là
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án A
Điều kiện: \( - 2 < x \ne 5\).
\({\log _2}\left( {x + 2} \right) + {\log _4}{\left( {x - 5} \right)^2} + {\log _{\frac{1}{2}}}8 = 0 \Leftrightarrow {\log _2}\left( {x + 2} \right) + {\log _2}\left| {x - 5} \right| = {\log _2}8\)
\( \Leftrightarrow {\log _2}\left[ {\left( {x + 2} \right)\left| {x - 5} \right|} \right] = {\log _2}8 \Leftrightarrow \left( {x + 2} \right)\left| {x - 5} \right| = 8\)
\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 5\\\left( {x + 2} \right)\left( {x - 5} \right) = 8\end{array} \right.\\\left\{ \begin{array}{l} - 2 < x < 5\\\left( {x + 2} \right)\left( {5 - x} \right) = 8\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 5\\{x^2} - 3{\rm{x}} - 18 = 0\end{array} \right.\\\left\{ \begin{array}{l} - 2 < x < 5\\ - {x^2} + 3{\rm{x}} + 2 = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 5\\x = 6 \vee x = - 3\end{array} \right.\\\left\{ \begin{array}{l} - 2 < x < 5\\x = \frac{{3 + \sqrt {17} }}{2} \vee x = \frac{{3 - \sqrt {17} }}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 6\\x = \frac{{3 + \sqrt {17} }}{2}\\x = \frac{{3 - \sqrt {17} }}{2}\end{array} \right.\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 986
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?
Câu 2:
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {12; + \infty } \right)\)?
Câu 3:
Cho \(\int\limits_0^4 {f\left( x \right)d{\rm{x}}} = 2018\). Tính tích phân \(I = \int\limits_0^2 {\left[ {f\left( {2{\rm{x}}} \right) + f\left( {4 - 2{\rm{x}}} \right)} \right]d{\rm{x}}} \).
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, khoảng cách từ điểm A đến \(\left( {SBC} \right)\) là \(\frac{{a\sqrt {15} }}{5}\), khoảng cách giữa SA, BC là \(\frac{{a\sqrt {15} }}{5}\). Biết hình chiếu của S lên \(\left( {ABC} \right)\) nằm trong tam giác ABC. Tính thể tích khối chóp S.ABC.
Câu 5:
Trong không gian Oxyz cho điểm \(I\left( {2;3;4} \right)\) và \(A\left( {1;2;3} \right)\). Phương trình mặt cầu tâm I và đi qua A có phương trình là:
Câu 6:
Với a, b là 2 số dương tùy ý thì \(\log \left( {{a^3}{b^2}} \right)\) có giá trị bằng biểu thức nào sau đây?
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận