Câu hỏi:
27/06/2022 4,442Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, khoảng cách từ điểm A đến \(\left( {SBC} \right)\) là \(\frac{{a\sqrt {15} }}{5}\), khoảng cách giữa SA, BC là \(\frac{{a\sqrt {15} }}{5}\). Biết hình chiếu của S lên \(\left( {ABC} \right)\) nằm trong tam giác ABC. Tính thể tích khối chóp S.ABC.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án C
Dựng hình bình hành ABCD.
Gọi H là hình chiếu của S lên \(\left( {ABC} \right)\); E là hình chiếu của H lên AD; K là hình chiếu của H lên BC; P là hình chiếu của K lên SE; Q là hình chiếu của E lên SK.
Ta có: \(d\left( {A,(SBC)} \right) = EQ = \frac{{a\sqrt {15} }}{5}\);
\({\rm{d}}\left( {SA,BC} \right) = d\left( {BC,(SA{\rm{D}})} \right) = d\left( {K,(SA{\rm{D}})} \right) = KP = \frac{{a\sqrt {15} }}{5}\).
\( \Rightarrow KP = EQ = \frac{{a\sqrt {15} }}{5} \Rightarrow \Delta SEK\) cân tại \(S \Rightarrow H\) là trung điểm của EK.
Gọi M là trung điểm của \(BC \Rightarrow EK = AM = \frac{{a\sqrt 3 }}{2}\).
Ta có \(QK = \sqrt {E{K^2} - E{Q^2}} = \frac{{a\sqrt {15} }}{{10}}\).
\(\Delta SHK\) và \(\Delta EQK\) đồng dạng \( \Rightarrow \frac{{SH}}{{EQ}} = \frac{{HK}}{{QK}} \Rightarrow SH = \frac{{EQ.HK}}{{QK}} = \frac{{\frac{{a\sqrt {15} }}{5}.\frac{{a\sqrt 3 }}{4}}}{{\frac{{a\sqrt {15} }}{{10}}}} = \frac{{a\sqrt 3 }}{2}\).
\({V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.\frac{{a\sqrt 3 }}{2} = \frac{{{a^3}}}{8}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?
Câu 2:
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {12; + \infty } \right)\)?
Câu 3:
Số nghiệm của phương trình \({\log _2}\left( {x + 2} \right) + {\log _4}{\left( {x - 5} \right)^2} + {\log _{\frac{1}{2}}}8 = 0\) là
Câu 4:
Cho \(\int\limits_0^4 {f\left( x \right)d{\rm{x}}} = 2018\). Tính tích phân \(I = \int\limits_0^2 {\left[ {f\left( {2{\rm{x}}} \right) + f\left( {4 - 2{\rm{x}}} \right)} \right]d{\rm{x}}} \).
Câu 5:
Với a, b là 2 số dương tùy ý thì \(\log \left( {{a^3}{b^2}} \right)\) có giá trị bằng biểu thức nào sau đây?
Câu 6:
Cho phương trình \(\log _3^2\left( {3{\rm{x}}} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0\) (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\) là
Câu 7:
Trong không gian Oxyz cho điểm \(I\left( {2;3;4} \right)\) và \(A\left( {1;2;3} \right)\). Phương trình mặt cầu tâm I và đi qua A có phương trình là:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận