Câu hỏi:

27/06/2022 4,442

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, khoảng cách từ điểm A đến \(\left( {SBC} \right)\)\(\frac{{a\sqrt {15} }}{5}\), khoảng cách giữa SA, BC\(\frac{{a\sqrt {15} }}{5}\). Biết hình chiếu của S lên \(\left( {ABC} \right)\) nằm trong tam giác ABC. Tính thể tích khối chóp S.ABC.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, khoảng cách từ điểm A  (ảnh 1)

Dựng hình bình hành ABCD.

Gọi H là hình chiếu của S lên \(\left( {ABC} \right)\); E là hình chiếu của H lên AD; K là hình chiếu của H lên BC; P là hình chiếu của K lên SE; Q là hình chiếu của E lên SK.

Ta có: \(d\left( {A,(SBC)} \right) = EQ = \frac{{a\sqrt {15} }}{5}\);

\({\rm{d}}\left( {SA,BC} \right) = d\left( {BC,(SA{\rm{D}})} \right) = d\left( {K,(SA{\rm{D}})} \right) = KP = \frac{{a\sqrt {15} }}{5}\).

\( \Rightarrow KP = EQ = \frac{{a\sqrt {15} }}{5} \Rightarrow \Delta SEK\) cân tại \(S \Rightarrow H\) là trung điểm của EK.

Gọi M là trung điểm của \(BC \Rightarrow EK = AM = \frac{{a\sqrt 3 }}{2}\).

Ta có \(QK = \sqrt {E{K^2} - E{Q^2}} = \frac{{a\sqrt {15} }}{{10}}\).

\(\Delta SHK\)\(\Delta EQK\) đồng dạng \( \Rightarrow \frac{{SH}}{{EQ}} = \frac{{HK}}{{QK}} \Rightarrow SH = \frac{{EQ.HK}}{{QK}} = \frac{{\frac{{a\sqrt {15} }}{5}.\frac{{a\sqrt 3 }}{4}}}{{\frac{{a\sqrt {15} }}{{10}}}} = \frac{{a\sqrt 3 }}{2}\).

\({V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.\frac{{a\sqrt 3 }}{2} = \frac{{{a^3}}}{8}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?

Xem đáp án » 27/06/2022 23,984

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {12; + \infty } \right)\)?

Xem đáp án » 27/06/2022 15,955

Câu 3:

Số nghiệm của phương trình \({\log _2}\left( {x + 2} \right) + {\log _4}{\left( {x - 5} \right)^2} + {\log _{\frac{1}{2}}}8 = 0\)

Xem đáp án » 27/06/2022 13,664

Câu 4:

Cho \(\int\limits_0^4 {f\left( x \right)d{\rm{x}}} = 2018\). Tính tích phân \(I = \int\limits_0^2 {\left[ {f\left( {2{\rm{x}}} \right) + f\left( {4 - 2{\rm{x}}} \right)} \right]d{\rm{x}}} \).

Xem đáp án » 27/06/2022 7,017

Câu 5:

Với a, b là 2 số dương tùy ý thì \(\log \left( {{a^3}{b^2}} \right)\) có giá trị bằng biểu thức nào sau đây?

Xem đáp án » 27/06/2022 5,608

Câu 6:

Cho phương trình \(\log _3^2\left( {3{\rm{x}}} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0\) (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\)

Xem đáp án » 27/06/2022 5,220

Câu 7:

Trong không gian Oxyz cho điểm \(I\left( {2;3;4} \right)\)\(A\left( {1;2;3} \right)\). Phương trình mặt cầu tâm I và đi qua A có phương trình là:

Xem đáp án » 27/06/2022 4,855