Câu hỏi:
27/06/2022 1,476Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau: \({d_1}\): \(\frac{{x - 2}}{2} = \frac{{y + 2}}{1} = \frac{{z - 6}}{{ - 2}}\), \({d_2}\): \(\frac{{x - 4}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 1}}{3}\). Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương trình tham số \({d_1}\): \(\left\{ \begin{array}{l}x = 2 + 2{t_1}\\y = - 2 + {t_1}\\z = 6 - 2{t_1}\end{array} \right.,\left( {{t_1} \in \mathbb{R}} \right)\)
\({d_1}\) đi qua điểm \(M\left( {2; - 2;6} \right)\) và véc tơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2;1; - 2} \right)\)
Phương trình tham số \({d_2}\): \(\left\{ \begin{array}{l}x = 4 + {t_2}\\y = - 2 - 2{t_2}\\z = - 1 + 3{t_2}\end{array} \right.,\left( {{t_2} \in \mathbb{R}} \right)\)
\({d_2}\) đi qua điểm \(N\left( {4; - 2; - 1} \right)\) và véc tơ chỉ phương \(\overrightarrow {{u_2}} = \left( {1; - 2;3} \right)\)
Vì mặt phẳng \(\left( P \right)\) chứa \({d_1}\), và song song với \({d_2}\) ta có: \(\left\{ \begin{array}{l}\overrightarrow {{n_{\left( P \right)}}} \bot \overrightarrow {{u_1}} \\\overrightarrow {{n_{\left( P \right)}}} \bot \overrightarrow {{u_2}} \end{array} \right. \Rightarrow \overrightarrow {{n_{\left( P \right)}}} = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = - \left( {1;8;5} \right)\)
Mặt phẳng \(\left( P \right)\) đi qua \(M\left( {2; - 2;6} \right)\) và véc tơ pháp tuyến \(\overrightarrow {{n_{\left( P \right)}}} = - \left( {1;8;5} \right)\), nên phương trình mặt phẳng \(\left( P \right)\): \[\left( {x - 2} \right) + 8\left( {y + 2} \right) + 5\left( {z - 6} \right) = 0\] hay \(\left( P \right)\): \[x + 8y + 5z - 16 = 0\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian tọa độ Oxyz, cho \(A\left( { - 3;1;1} \right)\), \(B\left( {1; - 1;5} \right)\) và mặt phẳng \(\left( P \right)\): \(2x - y + 2z + 11 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm A, B và tiếp xúc với mặt phẳng \(\left( P \right)\) tại điểm C. Biết C luôn thuộc đường tròn \(\left( T \right)\) cố định. Tính bán kính r của đường tròn \(\left( T \right)\).
Câu 2:
Cho \(\int\limits_0^1 {f\left( x \right)} = 3\), \(\int\limits_0^1 {g\left( x \right)} = - 2\). Tính giá trị của biểu thức \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).
Câu 3:
Cho một hộp đựng 12 viên bi, trong đó có 7 viên bi đỏ, 5 viên bi xanh. Lấy ngẫu nhiên một lần 3 viên bi. Tính xác xuất lấy được ít nhất 2 viên bi màu xanh.
Câu 4:
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A\left( {1;2; - 1} \right)\), \(B\left( {2;1;0} \right)\) và mặt phẳng \(\left( P \right)\): \(2x + y - 3z + 1 = 0\). Gọi \(\left( Q \right)\) là mặt phẳng chứa A; B và vuông góc với \(\left( P \right)\). Phương trình mặt phẳng \(\left( Q \right)\) là:
Câu 5:
Cho a là một số thực dương, khác 1. Đặt \({\log _3}a = \alpha \). Tính giá trị của biểu thức \(P = {\log _{\frac{1}{3}}}a - {\log _{\sqrt 3 }}{a^2} + {\log _a}9\) theo \(\alpha \)
Câu 6:
Cho hàm số \(y = {x^3} - 6{x^2} + 9x + 1\). Mệnh đề nào dưới đây là đúng?
về câu hỏi!