Câu hỏi:
27/06/2022 5,797Cho một hộp đựng 12 viên bi, trong đó có 7 viên bi đỏ, 5 viên bi xanh. Lấy ngẫu nhiên một lần 3 viên bi. Tính xác xuất lấy được ít nhất 2 viên bi màu xanh.
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án A
Gọi B là biến cố “lấy được ít nhất 2 viên bi xanh”
Để lấy được ít nhất 2 viên bi xanh ta xét 2 trường hợp
TH1: Lấy được cả 3 viên bi xanh có \(C_5^3 = 10\) cách
TH2: Lấy ra được 2 viên bi xanh và 1 viên bi đỏ có \(C_5^2.C_7^1 = 70\) cách
Vậy \(\left| {{\Omega _B}} \right| = 10 + 70 = 80 \Rightarrow P\left( B \right) = \frac{{80}}{{220}} = \frac{4}{{11}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Ta có \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} = 2\int\limits_0^1 {f\left( x \right)} - 3\int\limits_0^1 {g\left( x \right)} = 12\)
Lời giải
Đáp án A
Phương trình mặt phẳng \(\left( Q \right)\) chứa AB và vuông góc với mặt phẳng \(\left( P \right)\) nên có cặp vecto chỉ phương là \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\) và \(\overrightarrow {{n_P}} = \left( {2;1; - 3} \right) \Rightarrow \overrightarrow {{n_Q}} = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_P}} } \right] = \left( {2;5;3} \right)\).
Mặt phẳng \(\left( Q \right)\) đi qua điểm \(A\left( {1;2; - 1} \right)\) nên \(2\left( {x - 1} \right) + 5\left( {y - 2} \right) + 3\left( {z + 1} \right) = 0 \Leftrightarrow 2x + 5y + 3z - 9 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.