Câu hỏi:

27/06/2022 812 Lưu

Tập nghiệm của bất phương trình \[{\log _{\frac{1}{3}}}\left( {x - 1} \right) + {\log _3}\left( {11 - 2x} \right) \ge 0\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Biến đổi đưa về cùng cơ số rồi giải bất phương trình.

Cách giải:

Điều kiện: \[\left\{ \begin{array}{l}x - 1 > 0\\11 - 2x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x < \frac{{11}}{2}\end{array} \right. \Leftrightarrow 1 < x < \frac{{11}}{2}\].

Ta có: \[{\log _{\frac{1}{3}}}\left( {x - 1} \right) + {\log _3}\left( {11 - 2x} \right) \ge 0 \Leftrightarrow - {\log _3}\left( {x - 1} \right) + {\log _3}\left( {11 - 2x} \right) \ge 0\]

\[ \Rightarrow {\log _3}\frac{{11 - 2x}}{{x - 1}} \ge 0 \Leftrightarrow \frac{{11 - 2x}}{{x - 1}} \ge 1 \Leftrightarrow \frac{{11 - 2x}}{{x - 1}} - 1 \ge 0 \Leftrightarrow \frac{{12 - 3x}}{{x - 1}} \ge 0 \Leftrightarrow 12 - 3x \ge 0 \Leftrightarrow x \le 4\] (do \[x - 1 > 0\]).

Kết hợp với điều kiện \[1 < x < \frac{{11}}{2}\] ta được \[1 < x \le 4\] hay tập nghiệm của bất phương trình là \[S = \left( {1;4} \right]\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương trình đã cho là phương trình của một mặt cầu

\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].

Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Câu 2

Lời giải

Đáp án D

Phương pháp:

Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].

Cách giải:

Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]

Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP