Câu hỏi:
27/06/2022 428Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có đạo hàm \[f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\] để hàm số \[g\left( x \right) = f\left( {1 - x} \right)\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)\]?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Hàm số nghịch biến trên \[\left( { - \infty ; - 1} \right)\] nếu \[g'\left( x \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right)\].
Cách giải:
Ta có \[\begin{array}{l}g'\left( x \right) = - f'\left( {1 - x} \right) = - {\left( {1 - x} \right)^2}\left( {1 - x - 2} \right)\left[ {{{\left( {1 - x} \right)}^2} - 6\left( {1 - x} \right) + m} \right]\\ = - {\left( {1 - x} \right)^2}\left( { - 1 - x} \right)\left( {{x^2} + 4x + m - 5} \right) = {\left( {x - 1} \right)^2}\left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right).\end{array}\]
Hàm số \[g\left( x \right)\] nghịch biến trên \[\left( { - \infty ; - 1} \right)\].
\[\begin{array}{l} \Leftrightarrow g'\left( x \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right) \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right)\\ \Leftrightarrow {x^2} + 4x + m - 5 \ge 0,\forall x \in \left( { - \infty ; - 1} \right)\;\left( {{\rm{do}}\;x + 1 < 0,\forall x \in \left( { - \infty ; - 1} \right)} \right)\\ \Leftrightarrow h\left( x \right) = {x^2} + 4x - 5 \ge m\;\forall x \in \left( { - \infty ; - 1} \right) \Leftrightarrow - m \le \mathop {\min }\limits_{\left( { - \infty ; - 1} \right]} h\left( x \right)\end{array}\]
Ta có: \[h'\left( x \right) = 2x + 4 = 0 \Leftrightarrow x = - 2\].
BBT
Dựa vào BBT ta có \[ - m \le - 9 \Leftrightarrow m \ge 9\].
Mà \[m \in \left[ { - 2019;2019} \right]\] và m nguyên nên \[m \in \left[ {9;10;11;...;2019} \right]\] hay có \[2019 - 9 + 1 = 2011\] giá trị của m thỏa mãn.
Đã bán 189
Đã bán 1,3k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, có tất cả bao nhiêu giá trị nguyên của m để \[{x^2} + {y^2} + {z^2} + 2\left( {m + 2} \right)x - 2\left( {m - 1} \right)z + 3{m^2} - 5 = 0\] là phương trình của một mặt cầu?
Câu 2:
Phương trình \[{7^{2{x^2} + 5x + 4}} = 49\] có tổng tất cả các nghiệm bằng:
Câu 3:
Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng đi qua điểm \[M\left( {1;2;3} \right)\] và song song với giao tuyến của hai mặt phẳng \[\left( P \right):3x + y - 3 = 0,\left( Q \right):2x + y + z = 0\].
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho điểm \[A\left( {0;1;0} \right)\] và mặt phẳng \[\left( Q \right):x + y - 4z - 6 = 0\] và đường thẳng \[d:\left\{ \begin{array}{l}x = 3\\y = 3 + t\\z = 5 - t\end{array} \right.\]. Phương trình mặt phẳng qua A song song với d và vuông góc với mặt phẳng \[\left( Q \right)\] là:
Câu 5:
Cho hàm số \[f\left( x \right)\] có \[f\left( 1 \right) = 1\] và \[f'\left( x \right) = - \frac{{\ln x}}{{{x^2}}},\forall x > 0\]. Khi đó \[\int\limits_1^e {f\left( x \right)dx} \] bằng:
Câu 6:
Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 16\]. Mặt phẳng \[\left( P \right)\] thay đổi luôn đi qua điểm \[A\left( {2;1;9} \right)\] và tiếp xúc với mặt cầu \[\left( S \right)\]. Đặt M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của khoảng cách từ điểm O đến \[\left( P \right)\]. Giá trị M + m bằng:
Câu 7:
Trong không gian Oxyz, cho \[\overrightarrow {OA} = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k \], điểm \[B\left( {3; - 4;1} \right)\] và điểm \[C\left( {2;0; - 1} \right)\]. Tọa độ trọng tâm của tam giác ABC là:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận