Câu hỏi:

27/06/2022 167

Cho hàm số \[y = f\left( x \right)\], hàm số \[y = f'\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như hình vẽ:

Cho hàm số y=f(x) , hàm số y=f'(x)  liên tục trên R  và có bảng biến thiên như hình vẽ: (ảnh 1)

Bất phương trình \[f\left( x \right) < 4{e^{x + 1}} + m\] có nghiệm \[x \in \left( { - 1;1} \right)\] khi và chỉ khi:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có: \[f\left( x \right) < 4{e^{x + 1}} + m \Leftrightarrow m > f\left( x \right) - 4{e^{x + 1}} = g\left( x \right)\].

Mặt khác \[g'\left( x \right) = f'\left( x \right) - 4{e^{x + 1}}\], với \[x \in \left( { - 1;1} \right)\] thì \[\left\{ \begin{array}{l}f'\left( x \right) \le 4\\ - 4{e^{x + 1}} \in \left( { - 4{e^2}; - 4} \right)\end{array} \right.\].

Do đó \[g'\left( x \right) \le 4 - 4 = 0\] suy ra hàm số \[g\left( x \right)\] nghịch biến trên khoảng \[\left( { - 1;1} \right)\].

Khi đó bảng biến thiên của \[g\left( x \right)\] là:

Cho hàm số y=f(x) , hàm số y=f'(x)  liên tục trên R  và có bảng biến thiên như hình vẽ: (ảnh 2)

Suy ra phương trình \[m > f\left( x \right) - 4{e^{x + 1}}\] có nghiệm \[ \Leftrightarrow m > g\left( 1 \right) \Leftrightarrow m > f\left( 1 \right) - 4{e^2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, có tất cả bao nhiêu giá trị nguyên của m để \[{x^2} + {y^2} + {z^2} + 2\left( {m + 2} \right)x - 2\left( {m - 1} \right)z + 3{m^2} - 5 = 0\] là phương trình của một mặt cầu?

Xem đáp án » 27/06/2022 15,703

Câu 2:

Phương trình \[{7^{2{x^2} + 5x + 4}} = 49\] có tổng tất cả các nghiệm bằng:

Xem đáp án » 27/06/2022 3,256

Câu 3:

Cho hàm số \[f\left( x \right)\]\[f\left( 1 \right) = 1\]\[f'\left( x \right) = - \frac{{\ln x}}{{{x^2}}},\forall x > 0\]. Khi đó \[\int\limits_1^e {f\left( x \right)dx} \] bằng:

Xem đáp án » 27/06/2022 3,086

Câu 4:

Trong không gian Oxyz, cho \[\overrightarrow {OA} = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k \], điểm \[B\left( {3; - 4;1} \right)\] và điểm \[C\left( {2;0; - 1} \right)\]. Tọa độ trọng tâm của tam giác ABC là:

Xem đáp án » 27/06/2022 2,223

Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho điểm \[A\left( {0;1;0} \right)\] và mặt phẳng \[\left( Q \right):x + y - 4z - 6 = 0\] và đường thẳng \[d:\left\{ \begin{array}{l}x = 3\\y = 3 + t\\z = 5 - t\end{array} \right.\]. Phương trình mặt phẳng qua A song song với d và vuông góc với mặt phẳng \[\left( Q \right)\] là:

Xem đáp án » 27/06/2022 2,174

Câu 6:

Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng đi qua điểm \[M\left( {1;2;3} \right)\] và song song với giao tuyến của hai mặt phẳng \[\left( P \right):3x + y - 3 = 0,\left( Q \right):2x + y + z = 0\].

Xem đáp án » 27/06/2022 2,050

Câu 7:

Cho dãy số \[\left( {{u_n}} \right)\] với \[{u_n} = 2n + 5\]. Số hạng \[{u_4}\] bằng:

Xem đáp án » 27/06/2022 2,011

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store