Câu hỏi:

27/06/2022 224

Một hình hộp chữ nhật có chiều cao là 90 cm, đáy hộp là hình chữ nhật có chiều rộng là 50 cm và chiều dài là 80 cm. Trong khối hộp có chứa nước, mực nước so với đáy hộp có chiều cao là 40 cm. Hỏi khi đặt vào khối hộp một khối trụ có chiều cao bằng chiều cao khối hộp và bán kính đáy là 20 cm theo phương thẳng đứng thì chiều cao của mực nước so với đáy là bao nhiêu?

Một hình hộp chữ nhật có chiều cao là 90 cm, đáy hộp là hình chữ nhật có chiều rộng là 50 cm (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Trước khi đặt vào khối hộp một khối trụ thì thể tích lượng nước có trong khối hộp là:

\[{V_n} = 40.80.50 = 160000\left( {c{m^3}} \right)\].

Gọi \[h\left( {cm} \right)\] là chiều cao của mực nước so với đáy.

Sau khi đặt vào khối hộp một khối trụ thì thể tích lượng nước là: \[{V_n} = h.\left( {4000 - 400\pi } \right)\left( {c{m^3}} \right)\]

Do lượng nước không đổi nên ta có: \[\begin{array}{l}h.\left( {4000 - 400\pi } \right) = 160000\\ \Leftrightarrow h = \frac{{160000}}{{4000 - 400\pi }} \approx 58,32\;\left( {cm} \right).\end{array}\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, có tất cả bao nhiêu giá trị nguyên của m để \[{x^2} + {y^2} + {z^2} + 2\left( {m + 2} \right)x - 2\left( {m - 1} \right)z + 3{m^2} - 5 = 0\] là phương trình của một mặt cầu?

Xem đáp án » 27/06/2022 25,807

Câu 2:

Phương trình \[{7^{2{x^2} + 5x + 4}} = 49\] có tổng tất cả các nghiệm bằng:

Xem đáp án » 27/06/2022 6,178

Câu 3:

Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng đi qua điểm \[M\left( {1;2;3} \right)\] và song song với giao tuyến của hai mặt phẳng \[\left( P \right):3x + y - 3 = 0,\left( Q \right):2x + y + z = 0\].

Xem đáp án » 27/06/2022 4,377

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho điểm \[A\left( {0;1;0} \right)\] và mặt phẳng \[\left( Q \right):x + y - 4z - 6 = 0\] và đường thẳng \[d:\left\{ \begin{array}{l}x = 3\\y = 3 + t\\z = 5 - t\end{array} \right.\]. Phương trình mặt phẳng qua A song song với d và vuông góc với mặt phẳng \[\left( Q \right)\] là:

Xem đáp án » 27/06/2022 4,296

Câu 5:

Cho hàm số \[f\left( x \right)\]\[f\left( 1 \right) = 1\]\[f'\left( x \right) = - \frac{{\ln x}}{{{x^2}}},\forall x > 0\]. Khi đó \[\int\limits_1^e {f\left( x \right)dx} \] bằng:

Xem đáp án » 27/06/2022 3,967

Câu 6:

Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 16\]. Mặt phẳng \[\left( P \right)\] thay đổi luôn đi qua điểm \[A\left( {2;1;9} \right)\] và tiếp xúc với mặt cầu \[\left( S \right)\]. Đặt M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của khoảng cách từ điểm O đến \[\left( P \right)\]. Giá trị M + m bằng:

Xem đáp án » 27/06/2022 3,065

Câu 7:

Trong không gian Oxyz, cho \[\overrightarrow {OA} = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k \], điểm \[B\left( {3; - 4;1} \right)\] và điểm \[C\left( {2;0; - 1} \right)\]. Tọa độ trọng tâm của tam giác ABC là:

Xem đáp án » 27/06/2022 2,439
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua