Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \[\widehat {ABC} = 60^\circ \]. Hình chiếu vuông góc của điểm S lên mặt phẳng \[\left( {ABCD} \right)\] trùng với trọng tâm tam giác ABC. Gọi \[\varphi \] là góc giữa đường thẳng SB với mặt phẳng \[\left( {SCD} \right)\], tính \[\sin \varphi \] biết rằng \[SB = a\].
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
- Gọi M là trung điểm của SD, nhận xét góc giữa SB và \[\left( {SCD} \right)\] cũng bằng góc giữa OM và \[\left( {SCD} \right)\].
- Xác định góc \[\varphi \] và tính \[\sin \varphi \].
Cách giải:

Gọi M là trung điểm của SD, nhận xét góc giữa SB và \[\left( {SCD} \right)\] cũng bằng góc giữa OM và \[\left( {SCD} \right)\] (vì \[OM//SB\]).
Gọi H là hình chiếu của O trên \[\left( {SCD} \right) \Rightarrow \left( {OM,\left( {SCD} \right)} \right) = \left( {OM,MH} \right) = OMH\].
Trong \[\left( {SBD} \right)\] kẻ \[OE//SH\], khi đó tứ diện OECD là tứ diện vuông nên \[\frac{1}{{O{H^2}}} = \frac{1}{{O{C^2}}} + \frac{1}{{O{D^2}}} + \frac{1}{{O{E^2}}}\].
Ta dễ dàng tính được: \[OC = \frac{a}{2},OD = \frac{{a\sqrt 3 }}{2}\].
Lại có \[\frac{{OE}}{{SH}} = \frac{{OD}}{{HD}} = \frac{3}{4} \Rightarrow OE = \frac{3}{4}SH\], mà \[SH = \sqrt {S{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 6 }}{3}\].
Do đó \[OE = \frac{3}{4}SH = \frac{3}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{4}\].
Suy ra \[\frac{1}{{O{H^2}}} = \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{4}} \right)}^2}}} = \frac{8}{{{a^2}}} \Rightarrow OH = \frac{{a\sqrt 2 }}{4}\].
Tam giác OMH vuông tại H có \[OM = \frac{1}{2}SB = \frac{a}{2};OH = \frac{{a\sqrt 2 }}{4} \Rightarrow \sin OMH = \frac{{OH}}{{OM}} = \frac{{\sqrt 2 }}{2}\].
Vậy \[\sin \varphi = \frac{{\sqrt 2 }}{2}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương trình đã cho là phương trình của một mặt cầu
\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].
Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Lời giải
Đáp án D
Phương pháp:
Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].
Cách giải:
Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]
Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.