Câu hỏi:
27/06/2022 1,000Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \[\widehat {ABC} = 60^\circ \]. Hình chiếu vuông góc của điểm S lên mặt phẳng \[\left( {ABCD} \right)\] trùng với trọng tâm tam giác ABC. Gọi \[\varphi \] là góc giữa đường thẳng SB với mặt phẳng \[\left( {SCD} \right)\], tính \[\sin \varphi \] biết rằng \[SB = a\].
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
- Gọi M là trung điểm của SD, nhận xét góc giữa SB và \[\left( {SCD} \right)\] cũng bằng góc giữa OM và \[\left( {SCD} \right)\].
- Xác định góc \[\varphi \] và tính \[\sin \varphi \].
Cách giải:
Gọi M là trung điểm của SD, nhận xét góc giữa SB và \[\left( {SCD} \right)\] cũng bằng góc giữa OM và \[\left( {SCD} \right)\] (vì \[OM//SB\]).
Gọi H là hình chiếu của O trên \[\left( {SCD} \right) \Rightarrow \left( {OM,\left( {SCD} \right)} \right) = \left( {OM,MH} \right) = OMH\].
Trong \[\left( {SBD} \right)\] kẻ \[OE//SH\], khi đó tứ diện OECD là tứ diện vuông nên \[\frac{1}{{O{H^2}}} = \frac{1}{{O{C^2}}} + \frac{1}{{O{D^2}}} + \frac{1}{{O{E^2}}}\].
Ta dễ dàng tính được: \[OC = \frac{a}{2},OD = \frac{{a\sqrt 3 }}{2}\].
Lại có \[\frac{{OE}}{{SH}} = \frac{{OD}}{{HD}} = \frac{3}{4} \Rightarrow OE = \frac{3}{4}SH\], mà \[SH = \sqrt {S{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 6 }}{3}\].
Do đó \[OE = \frac{3}{4}SH = \frac{3}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{4}\].
Suy ra \[\frac{1}{{O{H^2}}} = \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{4}} \right)}^2}}} = \frac{8}{{{a^2}}} \Rightarrow OH = \frac{{a\sqrt 2 }}{4}\].
Tam giác OMH vuông tại H có \[OM = \frac{1}{2}SB = \frac{a}{2};OH = \frac{{a\sqrt 2 }}{4} \Rightarrow \sin OMH = \frac{{OH}}{{OM}} = \frac{{\sqrt 2 }}{2}\].
Vậy \[\sin \varphi = \frac{{\sqrt 2 }}{2}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương trình đã cho là phương trình của một mặt cầu
\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].
Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Lời giải
Đáp án D
Phương pháp:
Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].
Cách giải:
Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]
Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải