Câu hỏi:

27/06/2022 349 Lưu

Cho hàm số \[y = f\left( x \right)\] liên tục và có đạo hàm trên \[\mathbb{R}\] thỏa mãn \[f\left( 2 \right) = - 2;\int\limits_0^2 {f\left( x \right)dx} = 1\]. Tính tích phân \[I = \int\limits_{ - 1}^3 {f'\left( {\sqrt {x + 1} } \right)dx} \].

A. \[I = - 5.\]            
B. \[I = 0.\]                 
C. \[I = - 18.\]          
D. \[I = - 10.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Đặt \[\sqrt {x + 1} = t \Rightarrow x + 1 = {t^2} \Rightarrow dx = 2tdt\].

Đổi cận \[x = - 1 \Rightarrow t = 0;x = 3 \Rightarrow t = 2\].

\[ \Rightarrow I = \int\limits_0^2 {f'\left( t \right)2tdt} = \int\limits_0^2 {2xf'\left( x \right)dx} \].

Đặt \[\left\{ \begin{array}{l}u = 2x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v = f\left( x \right)\end{array} \right.\].

\[ \Rightarrow I = 2x.f'\left( x \right)\left| \begin{array}{l}^2\\_0\end{array} \right. - \int\limits_0^2 {2.f\left( x \right)dx}  = 4.\left( { - 2} \right) - 2.1 = - 10\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 4.                          
B. 6.                          
C. 5.                          
D. 7.

Lời giải

Đáp án D

Phương trình đã cho là phương trình của một mặt cầu

\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].

Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Câu 2

A. 1.                         
B. \[\frac{5}{2}.\]      
C. \[ - 1.\]                  
D. \[ - \frac{5}{2}.\]

Lời giải

Đáp án D

Phương pháp:

Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].

Cách giải:

Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]

Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]

Câu 3

A. \[\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 3t\\z = 3 + t\end{array} \right..\]     
B. \[\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 3t\\z = 3 - t\end{array} \right..\]    
C. \[\left\{ \begin{array}{l}x = 1 - t\\y = 2 - 3t\\z = 3 + t\end{array} \right..\]    
D. \[\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 3t\\z = 3 + t\end{array} \right..\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {1; - 2;3} \right).\]                        
B. \[\left( { - 2;2;1} \right).\]   
C. \[\left( {2; - 2;1} \right).\]               
D. \[\left( { - 1;2; - 3} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP