Câu hỏi:

27/06/2022 334 Lưu

Trong không gian với hệ tọa độ Oxyz cho đường thẳng \[{d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\\z = 3\end{array} \right.\]\[{d_2}:\left\{ \begin{array}{l}x = 1\\y = 2 + 7t'\\z = 3 + t'\end{array} \right.\]. Phương trình đường phân giác của góc tù giữa \[{d_1}\]\[{d_2}\] là:

A. \[\frac{{x - 1}}{5} = \frac{{y - 2}}{{ - 12}} = \frac{{z - 3}}{1}.\]       
B. \[\frac{{x - 1}}{5} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}.\]                             
C. \[\frac{{x - 1}}{{ - 5}} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}.\] 
D. \[\frac{{x - 1}}{5} = \frac{{y - 2}}{{12}} = \frac{{z - 3}}{1}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Gọi d là đường thẳng cần tìm. Ta có: \[{d_1}\] cắt \[{d_2}\] tại điểm \[I\left( {1;2;3} \right) \Rightarrow d\] đi qua I.

Lại có: \[\overrightarrow {{u_1}} = \left( {1;1;0} \right),\overrightarrow {{u_2}} = \left( {0;7;1} \right)\], vì \[\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 7 > 0 \Rightarrow \] góc giữa \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \] là góc nhọn.

Suy ra VTCP của góc tù tạo bởi \[{d_1}\]\[{d_2}\] là:

\[\overrightarrow u = \frac{{\overrightarrow {{u_1}} }}{{\left| {\overrightarrow {{u_1}} } \right|}} - \frac{{\overrightarrow {{u_2}} }}{{\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left( {1;1;0} \right)}}{{\sqrt 2 }} - \frac{{\left( {0;7;1} \right)}}{{5\sqrt 2 }} = \frac{1}{{5\sqrt 2 }}\left( {5; - 2; - 1} \right) \Rightarrow \overrightarrow {{u_d}} = \left( {5; - 2; - 1} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 4.                          
B. 6.                          
C. 5.                          
D. 7.

Lời giải

Đáp án D

Phương trình đã cho là phương trình của một mặt cầu

\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].

Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Câu 2

A. 1.                         
B. \[\frac{5}{2}.\]      
C. \[ - 1.\]                  
D. \[ - \frac{5}{2}.\]

Lời giải

Đáp án D

Phương pháp:

Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].

Cách giải:

Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]

Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]

Câu 3

A. \[\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 3t\\z = 3 + t\end{array} \right..\]     
B. \[\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 3t\\z = 3 - t\end{array} \right..\]    
C. \[\left\{ \begin{array}{l}x = 1 - t\\y = 2 - 3t\\z = 3 + t\end{array} \right..\]    
D. \[\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 3t\\z = 3 + t\end{array} \right..\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {1; - 2;3} \right).\]                        
B. \[\left( { - 2;2;1} \right).\]   
C. \[\left( {2; - 2;1} \right).\]               
D. \[\left( { - 1;2; - 3} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP