Câu hỏi:
27/06/2022 314Trong không gian với hệ tọa độ Oxyz cho đường thẳng \[{d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\\z = 3\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 1\\y = 2 + 7t'\\z = 3 + t'\end{array} \right.\]. Phương trình đường phân giác của góc tù giữa \[{d_1}\] và \[{d_2}\] là:
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án C
Gọi d là đường thẳng cần tìm. Ta có: \[{d_1}\] cắt \[{d_2}\] tại điểm \[I\left( {1;2;3} \right) \Rightarrow d\] đi qua I.
Lại có: \[\overrightarrow {{u_1}} = \left( {1;1;0} \right),\overrightarrow {{u_2}} = \left( {0;7;1} \right)\], vì \[\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 7 > 0 \Rightarrow \] góc giữa \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \] là góc nhọn.
Suy ra VTCP của góc tù tạo bởi \[{d_1}\] và \[{d_2}\] là:
\[\overrightarrow u = \frac{{\overrightarrow {{u_1}} }}{{\left| {\overrightarrow {{u_1}} } \right|}} - \frac{{\overrightarrow {{u_2}} }}{{\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left( {1;1;0} \right)}}{{\sqrt 2 }} - \frac{{\left( {0;7;1} \right)}}{{5\sqrt 2 }} = \frac{1}{{5\sqrt 2 }}\left( {5; - 2; - 1} \right) \Rightarrow \overrightarrow {{u_d}} = \left( {5; - 2; - 1} \right)\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương trình đã cho là phương trình của một mặt cầu
\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].
Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Lời giải
Đáp án D
Phương pháp:
Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].
Cách giải:
Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]
Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.