Có bao nhiêu cặp số thực \[\left( {x;y} \right)\] thỏa mãn đồng thời hai điều kiện sau: \[{7^{\left| {{x^2} - 4x - 5} \right| - {{\log }_7}5}} = {5^{ - \left( {y + 2} \right)}}\] và \[2\left| {y - 2} \right| - \left| y \right| + {y^2} - y \le 7\]?
Quảng cáo
Trả lời:
Đáp án B
Xét phương trình: \[2\left| {y - 2} \right| - \left| y \right| + {y^2} - y \le 7\;\;\;\left( 1 \right)\]
TH1: \[y < 0,\;\left( 1 \right) \Leftrightarrow - 2y + 4 + y + {y^2} - y - 7 \le 0 \Leftrightarrow {y^2} - 2y - 3 \le 0 \Leftrightarrow - 1 \le y \le 3 \Rightarrow - 1 \le y < 0.\]
TH2: \[0 \le y < 2,\;\left( 1 \right) \Leftrightarrow - 2y + 4 - y + {y^2} - y - 7 \le 0 \Leftrightarrow {y^2} - 4y - 3 \le 0 \Leftrightarrow 2 - \sqrt 7 \le y \le 2 + \sqrt 7 \Rightarrow 0 \le y < 2.\]
TH3: \[y \ge 2,\;\left( 1 \right) \Leftrightarrow 2y - 4 - y + {y^2} - y - 7 \le 0 \Leftrightarrow {y^2} - 11 \le 0 \Leftrightarrow - \sqrt {11} \le y \le \sqrt {11} \Rightarrow 2 \le y \le \sqrt {11} .\]
Vậy nghiệm của (1) là \[ - 1 \le y \le \sqrt {11} \].
Ta có \[{7^{\left| {{x^2} - 4x - 5} \right| - {{\log }_7}5}} = {5^{ - \left( {y + 2} \right)}} \Leftrightarrow {7^{\left| {{x^2} - 4x - 5} \right|}}{.5^{ - 1}} = {5^{ - \left( {y + 2} \right)}} \Leftrightarrow {7^{\left| {{x^2} - 4x - 5} \right|}} = {5^{ - \left( {y + 1} \right)}}\;\;\;\left( * \right)\].
Do \[y \ge - 1 \Rightarrow - \left( {y + 1} \right) \le 0 \Rightarrow {5^{ - \left( {y + 1} \right)}} \le 1,{7^{\left| {{x^2} - 4x - 5} \right|}} \ge {7^0} = 1\] nên (*) xảy ra khi \[\left\{ \begin{array}{l}\left| {{x^2} - 4x - 5} \right| = 0\\ - \left( {y + 1} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 5\\y = - 1\end{array} \right.\\\left\{ \begin{array}{l}x = - 1\\y = - 1\end{array} \right.\end{array} \right.\].
Vậy có 2 cặp số thực \[\left( {x;y} \right)\] thỏa yêu cầu bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương trình đã cho là phương trình của một mặt cầu
\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].
Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Lời giải
Đáp án D
Phương pháp:
Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].
Cách giải:
Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]
Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.