Câu hỏi:
27/06/2022 355Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\]. Đồ thị của hàm số \[y = f'\left( x \right)\] như hình vẽ.
Đặt \[g\left( x \right) = 2f\left( {x + \frac{m}{2}} \right) - {x^2} - mx + {m^2} - 3\] với m là tham số. Gọi S là tập hợp các giá trị nguyên của tham số \[m \in \left[ { - 15;15} \right]\] để hàm số \[y = g\left( x \right)\] nghịch biến trên khoảng \[\left( {3;4} \right)\]. Số phần tử của tập hợp S là:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Ta có \[g'\left( x \right) = 2f'\left( {x + \frac{m}{2}} \right) - 2x - m = 2\left[ {f'\left( {x + \frac{m}{2}} \right) - \left( {x + \frac{m}{2}} \right)} \right]\].
Đặt \[t = x + \frac{m}{2}\] thì \[g'\left( t \right) < 0 \Leftrightarrow f'\left( t \right) < t \Leftrightarrow \left[ \begin{array}{l}t < - 3\\2 < t < 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x + \frac{m}{2} < - 3\\2 < x + \frac{m}{2} < 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x < - 3 - \frac{m}{2}\\2 - \frac{m}{2} < x < 5 - \frac{m}{2}\end{array} \right..\]
Giả thiết bài toán thỏa mãn khi \[\left[ \begin{array}{l} - 3 - \frac{m}{2} \ge 4\\2 - \frac{m}{2} \le 3 < 4 \le 5 - \frac{m}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m \le - 14\\ - 2 \le m \le 12\end{array} \right.\].
Kết hợp điều kiện \[m \in \mathbb{Z},m \in \left[ { - 15;15} \right]\] suy ra \[m = \left\{ { - 14; - 15; - 2; - 1;0;1;2} \right\}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, có tất cả bao nhiêu giá trị nguyên của m để \[{x^2} + {y^2} + {z^2} + 2\left( {m + 2} \right)x - 2\left( {m - 1} \right)z + 3{m^2} - 5 = 0\] là phương trình của một mặt cầu?
Câu 2:
Phương trình \[{7^{2{x^2} + 5x + 4}} = 49\] có tổng tất cả các nghiệm bằng:
Câu 3:
Cho hàm số \[f\left( x \right)\] có \[f\left( 1 \right) = 1\] và \[f'\left( x \right) = - \frac{{\ln x}}{{{x^2}}},\forall x > 0\]. Khi đó \[\int\limits_1^e {f\left( x \right)dx} \] bằng:
Câu 4:
Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng đi qua điểm \[M\left( {1;2;3} \right)\] và song song với giao tuyến của hai mặt phẳng \[\left( P \right):3x + y - 3 = 0,\left( Q \right):2x + y + z = 0\].
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho điểm \[A\left( {0;1;0} \right)\] và mặt phẳng \[\left( Q \right):x + y - 4z - 6 = 0\] và đường thẳng \[d:\left\{ \begin{array}{l}x = 3\\y = 3 + t\\z = 5 - t\end{array} \right.\]. Phương trình mặt phẳng qua A song song với d và vuông góc với mặt phẳng \[\left( Q \right)\] là:
Câu 6:
Trong không gian Oxyz, cho \[\overrightarrow {OA} = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k \], điểm \[B\left( {3; - 4;1} \right)\] và điểm \[C\left( {2;0; - 1} \right)\]. Tọa độ trọng tâm của tam giác ABC là:
Câu 7:
Cho dãy số \[\left( {{u_n}} \right)\] với \[{u_n} = 2n + 5\]. Số hạng \[{u_4}\] bằng:
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
44 bài tập Đạo hàm và khảo sát hàm số có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 23)
về câu hỏi!