Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\]. Đồ thị của hàm số \[y = f'\left( x \right)\] như hình vẽ.

Đặt \[g\left( x \right) = 2f\left( {x + \frac{m}{2}} \right) - {x^2} - mx + {m^2} - 3\] với m là tham số. Gọi S là tập hợp các giá trị nguyên của tham số \[m \in \left[ { - 15;15} \right]\] để hàm số \[y = g\left( x \right)\] nghịch biến trên khoảng \[\left( {3;4} \right)\]. Số phần tử của tập hợp S là:
Quảng cáo
Trả lời:
Đáp án A
Ta có \[g'\left( x \right) = 2f'\left( {x + \frac{m}{2}} \right) - 2x - m = 2\left[ {f'\left( {x + \frac{m}{2}} \right) - \left( {x + \frac{m}{2}} \right)} \right]\].
Đặt \[t = x + \frac{m}{2}\] thì \[g'\left( t \right) < 0 \Leftrightarrow f'\left( t \right) < t \Leftrightarrow \left[ \begin{array}{l}t < - 3\\2 < t < 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x + \frac{m}{2} < - 3\\2 < x + \frac{m}{2} < 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x < - 3 - \frac{m}{2}\\2 - \frac{m}{2} < x < 5 - \frac{m}{2}\end{array} \right..\]
Giả thiết bài toán thỏa mãn khi \[\left[ \begin{array}{l} - 3 - \frac{m}{2} \ge 4\\2 - \frac{m}{2} \le 3 < 4 \le 5 - \frac{m}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m \le - 14\\ - 2 \le m \le 12\end{array} \right.\].
Kết hợp điều kiện \[m \in \mathbb{Z},m \in \left[ { - 15;15} \right]\] suy ra \[m = \left\{ { - 14; - 15; - 2; - 1;0;1;2} \right\}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương trình đã cho là phương trình của một mặt cầu
\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].
Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Lời giải
Đáp án D
Phương pháp:
Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].
Cách giải:
Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]
Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.