Câu hỏi:

28/06/2022 200 Lưu

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = 2{x^3} - 3{x^2} - 12x + 10\] trên đoạn \[\left[ { - 3;3} \right]\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp

- Tính \(y'\) và tìm nghiệm của \(y' = 0\) trên đoạn \(\left[ { - 3;3} \right].\)

- Tính giá trị của hàm số tại hai điểm \( - 3;3\) và các điể là nghiệm của đạo hàm ở trên.

- So sánh kết quả và kết luận.

Cách giải

Ta có: \(y' = 6{x^2} - 6x - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1 \in \left[ { - 3;3} \right]\\x = 2 \in \left[ { - 3;3} \right]\end{array} \right.\)

Lại có: \(y\left( { - 3} \right) = - 35,y\left( { - 1} \right) = 17,y\left( 2 \right) = - 10,y\left( 3 \right) = 1.\)

Do đó giá trị lớn nhất của hàm số trên \(\left[ { - 3;3} \right]\)\(M = 17\) và giá trị nhỏ nhất của hàm số trên \(\left[ { - 3;3} \right]\)\(m = - 35;\)

Vậy \(T = M + m = 17 + \left( { - 35} \right) = - 18.\)  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Tập xác định: \(D = \mathbb{R}.\)

Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)

Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)

Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)

Có 95 giá trị nguyên của m thỏa mãn.

Lời giải

Đáp án C

+) Ta có \(\log _3^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0.\) Đặt \(t = {\log _3}x.\)\(x \in \left[ {1;81} \right]\) nên \(t \in \left[ {0;4} \right].\)

Khi đó phương trình đã cho trở thành: \({t^2} - \left( {m + 1} \right)t + 3m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = m - 2\end{array} \right.\)

+) Ycbt \( \Leftrightarrow \left\{ \begin{array}{l}0 \le m - 2 \le 4\\m - 2 \ne 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \le m \le 6\\m \ne 5\end{array} \right..\) Vậy có 4 số nguyên m thỏa ycbt.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP