Câu hỏi:

28/06/2022 761 Lưu

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + 2z - 2 = 0\] và điểm \[I\left( { - 1;2; - 1} \right)\]. Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.

A. \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 34\] 

B. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 16\]

C. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 25\]
D. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 34\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp

+ Cho mặt cầu \(\left( S \right)\) có tâm I và bán kính R và mặt phẳng \(\left( P \right)\) cắt mặt cầu theo giao tuyến là đường tròn có bán kính r thì ta có mối liên hệ \({R^2} = {h^2} + {r^2}\) với \(h = d\left( {I,\left( P \right)} \right)\). Từ đó ta tính được R.

+ Phương trình mặt cầu tâm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và bán kính R có dạng \({\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}\)

Cách giải

+ Ta có \(h = d\left( {I,\left( P \right)} \right) = \frac{{\left| { - 1 - 2.2 + 2.\left( { - 1} \right) - 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = \frac{9}{3} = 3.\)

+ Từ đề bài ta có bán kính đường tròn giao tuyến là \(r = 5\) nên bán kính mặt cầu là \(R = \sqrt {{r^2} + {h^2}} = \sqrt {{5^2} + {3^2}} = \sqrt {34} .\)

+ Phương trình mặt cầu tâm \(I\left( { - 1;2; - 1} \right)\) và bán kính \(R = \sqrt {34} \)\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 34.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 95                         
B. 94                         
C. 96                         
D. Vô số

Lời giải

Đáp án A

Tập xác định: \(D = \mathbb{R}.\)

Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)

Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)

Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)

Có 95 giá trị nguyên của m thỏa mãn.

Câu 2

A. \[P = - 5.\]            
B. \[P = 5.\]                
C. \[P = - 4.\]            
D. \[P = 2.\]

Lời giải

Đáp án B

Ta có \(\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = \int\limits_4^5 {\left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right)dx} = \ln \left| {\frac{{x + 1}}{{x + 2}}} \right|\left| {_{\scriptstyle\atop\scriptstyle4}^{\scriptstyle5\atop\scriptstyle}} \right. = 2\ln 2 + 2\ln 3 - \ln 5 - \ln 7.} \)

Suy ra \(\left\{ \begin{array}{l}a = b = 2\\c = d = - 1\end{array} \right. \Rightarrow P = ab + cd = 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{{a^3}\sqrt 3 }}{3}.\]                  
B. \[\frac{{8{a^3}\sqrt 3 }}{9}.\]     
C. \[\frac{{{a^3}\sqrt 3 }}{9}.\]                         
D. \[\frac{{8{a^3}\sqrt 3 }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{1}.\]        
B. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{{ - 1}}.\]               
C. \[\frac{{x - 3}}{{ - 5}} = \frac{{y + 2}}{1} = \frac{{z + 1}}{{ - 1}}.\]                          
D. \[\frac{{x + 8}}{1} = \frac{{y - 3}}{3} = \frac{z}{{ - 4}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[C_{50}^2.\]       
B. \[A_{50}^2.\]        
C. \[C_{50}^2 - 50.\] 
D. \[A_{50}^2 - 50.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP