Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + 2z - 2 = 0\] và điểm \[I\left( { - 1;2; - 1} \right)\]. Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.
Quảng cáo
Trả lời:
Đáp án D
Phương pháp
+ Cho mặt cầu \(\left( S \right)\) có tâm I và bán kính R và mặt phẳng \(\left( P \right)\) cắt mặt cầu theo giao tuyến là đường tròn có bán kính r thì ta có mối liên hệ \({R^2} = {h^2} + {r^2}\) với \(h = d\left( {I,\left( P \right)} \right)\). Từ đó ta tính được R.
+ Phương trình mặt cầu tâm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và bán kính R có dạng \({\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}\)
Cách giải
+ Ta có \(h = d\left( {I,\left( P \right)} \right) = \frac{{\left| { - 1 - 2.2 + 2.\left( { - 1} \right) - 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = \frac{9}{3} = 3.\)
+ Từ đề bài ta có bán kính đường tròn giao tuyến là \(r = 5\) nên bán kính mặt cầu là \(R = \sqrt {{r^2} + {h^2}} = \sqrt {{5^2} + {3^2}} = \sqrt {34} .\)
+ Phương trình mặt cầu tâm \(I\left( { - 1;2; - 1} \right)\) và bán kính \(R = \sqrt {34} \) là \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 34.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Tập xác định: \(D = \mathbb{R}.\)
Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)
Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)
Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)
Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)
Có 95 giá trị nguyên của m thỏa mãn.
Lời giải
Đáp án C
+) Ta có \(\log _3^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0.\) Đặt \(t = {\log _3}x.\) Vì \(x \in \left[ {1;81} \right]\) nên \(t \in \left[ {0;4} \right].\)
Khi đó phương trình đã cho trở thành: \({t^2} - \left( {m + 1} \right)t + 3m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = m - 2\end{array} \right.\)
+) Ycbt \( \Leftrightarrow \left\{ \begin{array}{l}0 \le m - 2 \le 4\\m - 2 \ne 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \le m \le 6\\m \ne 5\end{array} \right..\) Vậy có 4 số nguyên m thỏa ycbt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.