Câu hỏi:
28/06/2022 184Cho hình chóp S.ABCD đều có \[AB = 2\] và \[SA = 3\sqrt 2 \]. Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp
Xác định tâm mặt cầu ngoại tiếp hình chóp đều là giao của đường trung trực 1 cạnh bên và chiều cao của hình chóp.
Từ đó sử dụng tam giác đồng dạng để tính bán kính mặt cầu ngoại tiếp hình chóp đềuCách giải
Gọi O là tâm hình vuông ABCD và E là trung điểm SB.
Vì S.ABCD là hình chóp đều nên \(SO \bot \left( {ABCD} \right).\)
Trong \(\left( {SBO} \right)\) kẻ đường trung trực của SB cắt SO tại I, khi đó \(IA = IB = IC = ID = IS\) nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD và bán kính mặt cầu là \(R = IS.\)
Ta có ABCD là hình vuông cạnh 2
\( \Rightarrow BD = \sqrt {B{C^2} + C{D^2}} = 2\sqrt 2 \Rightarrow BO = \frac{{BD}}{2} = \sqrt 2 .\)
Ta có \(SA = SB = SC = SD = 3\sqrt 2 \) (vì S.ABCD là hình chóp đều) nên \(SE = EB = \frac{{3\sqrt 2 }}{2}\)
Xét tam giác SBO vuông tại O (vì \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OB\)) có \(SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {18 - 2} = 4.\)
Ta có \(\Delta SEI\) đồng dạng với tam giác SOB \(\left( {g - g} \right) \Rightarrow \frac{{SI}}{{SB}} = \frac{{SE}}{{SO}} \Leftrightarrow IS = \frac{{SB.SE}}{{SO}} = \frac{{3\sqrt 2 .\frac{{3\sqrt 2 }}{2}}}{4} = \frac{9}{4}.\)
Vậy bán kính \(R = \frac{9}{4}.\)
Chú ý: Các em có thể sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp hình chóp đều có cạnh bên là a và chiều cao h là \(R = \frac{{{a^2}}}{{2h}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số các giá trị nguyên của m để hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \left( {m + 50} \right){x^2} + \left( {{m^2} + 100m} \right)x + 2020m\] nghịch biến trên \[\left( {7;13} \right)\] là
Câu 2:
Cho khối chóp S.ABCD có đáy là hình vuông cạnh \[2a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy, mặt bên \[(SBC)\] tạo với đáy một góc \[{30^0}\].Thể tích của khối chóp đã cho bằng
Câu 3:
Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\] là
Câu 4:
Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho \[\vec a = \vec i + 3\vec j - 2\vec k\]. Tọa độ của vectơ \[\vec a\] là
Câu 7:
Cho hàm số \[y = f\left( x \right)\] liên tục có đạo hàm trên \[\mathbb{R},\] và có đồ thị như hình vẽ. Kí hiệu \[g\left( x \right) = f\left( {2\sqrt {2x} + \sqrt {1 - x} } \right) + m.\] Tìm điều kiện của tham số m để \[\mathop {Max}\limits_{\left[ {0;1} \right]} g\left( x \right) > 2\mathop {Min}\limits_{\left[ {0;1} \right]} g\left( x \right).\]
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!