Câu hỏi:

28/06/2022 298 Lưu

Cho hình chóp S.ABCD đều có \[AB = 2\]\[SA = 3\sqrt 2 \]. Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp

Xác định tâm mặt cầu ngoại tiếp hình chóp đều là giao của đường trung trực 1 cạnh bên và chiều cao của hình chóp.

Từ đó sử dụng tam giác đồng dạng để tính bán kính mặt cầu ngoại tiếp hình chóp đều
Cho hình chóp S.ABCD đều có AB=2 và SA=3 căn 2. Bán kính của mặt cầu (ảnh 1)

Cách giải

Gọi O là tâm hình vuông ABCDE là trung điểm SB.

S.ABCD là hình chóp đều nên \(SO \bot \left( {ABCD} \right).\)

Trong \(\left( {SBO} \right)\) kẻ đường trung trực của SB cắt SO tại I, khi đó \(IA = IB = IC = ID = IS\) nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD và bán kính mặt cầu là \(R = IS.\)

Ta có ABCD là hình vuông cạnh 2

\( \Rightarrow BD = \sqrt {B{C^2} + C{D^2}} = 2\sqrt 2 \Rightarrow BO = \frac{{BD}}{2} = \sqrt 2 .\)

Ta có \(SA = SB = SC = SD = 3\sqrt 2 \) (vì S.ABCD là hình chóp đều) nên \(SE = EB = \frac{{3\sqrt 2 }}{2}\)

Xét tam giác SBO vuông tại O (vì \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OB\)) có \(SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {18 - 2}  = 4.\)

Ta có \(\Delta SEI\) đồng dạng với tam giác SOB \(\left( {g - g} \right) \Rightarrow \frac{{SI}}{{SB}} = \frac{{SE}}{{SO}} \Leftrightarrow IS = \frac{{SB.SE}}{{SO}} = \frac{{3\sqrt 2 .\frac{{3\sqrt 2 }}{2}}}{4} = \frac{9}{4}.\)

Vậy bán kính \(R = \frac{9}{4}.\)

Chú ý: Các em có thể sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp hình chóp đều có cạnh bên là a và chiều cao h\(R = \frac{{{a^2}}}{{2h}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Tập xác định: \(D = \mathbb{R}.\)

Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)

Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)

Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)

Có 95 giá trị nguyên của m thỏa mãn.

Lời giải

Đáp án C

+) Ta có \(\log _3^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0.\) Đặt \(t = {\log _3}x.\)\(x \in \left[ {1;81} \right]\) nên \(t \in \left[ {0;4} \right].\)

Khi đó phương trình đã cho trở thành: \({t^2} - \left( {m + 1} \right)t + 3m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = m - 2\end{array} \right.\)

+) Ycbt \( \Leftrightarrow \left\{ \begin{array}{l}0 \le m - 2 \le 4\\m - 2 \ne 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \le m \le 6\\m \ne 5\end{array} \right..\) Vậy có 4 số nguyên m thỏa ycbt.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP