Câu hỏi:

28/06/2022 251

Biết bất phương trình \[{\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1\] có tập nghiệm là đoạn \[\left[ {a;b} \right]\]. Giá trị của \[a + b\] bằng

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp

Giải bất phương trình bằng cách đưa về bất phương trình bậc hai, ẩn là \({\log _5}\left( {{5^x} - 1} \right).\)

Cách giải

Điều kiện: \({5^x} - 1 > 0 \Leftrightarrow x > 0\)

Ta có:

\({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1 \Leftrightarrow {\log _5}\left( {{5^x} - 1} \right).\frac{1}{2}{\log _5}\left[ {5\left( {{5^x} - 1} \right)} \right] \le 1\)

\( \Leftrightarrow {\log _5}\left( {{5^x} - 1} \right).\left[ {1 + {{\log }_5}\left( {{5^x} - 1} \right)} \right] - 2 \le 0\)

\( \Leftrightarrow \log _5^2\left[ {{5^x} - 1} \right] + {\log _5}\left( {{5^x} - 1} \right) - 2 \le 0\)

\( \Leftrightarrow \left[ {{{\log }_5}\left( {{5^x} - 1} \right) - 1} \right]\left[ {{{\log }_5}\left( {{5^x} - 1} \right) + 2} \right] \le 0\)

\( \Leftrightarrow - 2 \le {\log _5}\left( {{5^x} - 1} \right) \le 1 \Leftrightarrow {5^{ - 2}} \le {5^x} - 1 \le {5^1} \Leftrightarrow \frac{1}{{25}} \le {5^x} - 1 \le 5\)

\( \Leftrightarrow \frac{{26}}{{25}} \le {5^x} \le 6 \Leftrightarrow {\log _5}\frac{{26}}{{25}} \le x \le {\log _5}6\)

Do đó tập nghiệm của bất phương trình là \(\left[ {{{\log }_5}\frac{{26}}{{25}};{{\log }_5}6} \right] \Rightarrow a = {\log _5}\frac{{26}}{{25}};b = {\log _5}6.\)

\( \Rightarrow a + b = {\log _5}\frac{{26}}{{25}} + {\log _5}6 = {\log _5}\frac{{156}}{{25}} = {\log _5}156 - {\log _5}25 = {\log _5}156 - 2\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số các giá trị nguyên của m để hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \left( {m + 50} \right){x^2} + \left( {{m^2} + 100m} \right)x + 2020m\] nghịch biến trên \[\left( {7;13} \right)\]

Xem đáp án » 28/06/2022 4,064

Câu 2:

Cho khối chóp S.ABCD có đáy là hình vuông cạnh \[2a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy, mặt bên \[(SBC)\] tạo với đáy một góc \[{30^0}\].Thể tích của khối chóp đã cho bằng

Cho khối chóp S.ABCD có đáy là hình vuông cạnh 2a cạnh bên SA vuông góc  (ảnh 1)

Xem đáp án » 28/06/2022 2,421

Câu 3:

Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\]

Xem đáp án » 28/06/2022 2,296

Câu 4:

Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]

Xem đáp án » 28/06/2022 2,103

Câu 5:

Một đa giác lồi có 50 cạnh thì có bao nhiêu đường chéo.

Xem đáp án » 28/06/2022 2,003

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho \[\vec a = \vec i + 3\vec j - 2\vec k\]. Tọa độ của vectơ \[\vec a\]

Xem đáp án » 28/06/2022 1,140

Câu 7:

Cho hàm số \[y = f\left( x \right)\] liên tục có đạo hàm trên \[\mathbb{R},\] và có đồ thị như hình vẽ. Kí hiệu \[g\left( x \right) = f\left( {2\sqrt {2x} + \sqrt {1 - x} } \right) + m.\] Tìm điều kiện của tham số m để \[\mathop {Max}\limits_{\left[ {0;1} \right]} g\left( x \right) > 2\mathop {Min}\limits_{\left[ {0;1} \right]} g\left( x \right).\]

Cho hàm số y=f(x)  liên tục có đạo hàm trên  R và có đồ thị như hình vẽ (ảnh 1)

Xem đáp án » 28/06/2022 1,024

Bình luận


Bình luận