Câu hỏi:

28/06/2022 324

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số y=f(x) có bảng biến thiên như sau:   Số đường tiệm cận (ảnh 1)

Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho bằng:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp

Cho hàm số \(y = f\left( x \right)\).

+) Nếu \[\mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow y = {y_0}\] là TCN của đồ thị hàm số.

+) Nếu \(\mathop {\lim }\limits_{x \to {x_0}} y = \infty \Rightarrow x = {x_0}\) là TCĐ của đồ thị hàm số.

Cách giải

Dựa vào BBT ta thấy:

\(\mathop {\lim }\limits_{x \to - \infty } y = 5 \Rightarrow y = 5\) là TCN của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {2^ - }} y = - \infty  \Rightarrow x = 2\) là TCĐ của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty \Rightarrow x = 3\) TCĐ của đồ thị hàm số.

Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số các giá trị nguyên của m để hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \left( {m + 50} \right){x^2} + \left( {{m^2} + 100m} \right)x + 2020m\] nghịch biến trên \[\left( {7;13} \right)\]

Xem đáp án » 28/06/2022 4,399

Câu 2:

Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\]

Xem đáp án » 28/06/2022 3,470

Câu 3:

Cho khối chóp S.ABCD có đáy là hình vuông cạnh \[2a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy, mặt bên \[(SBC)\] tạo với đáy một góc \[{30^0}\].Thể tích của khối chóp đã cho bằng

Cho khối chóp S.ABCD có đáy là hình vuông cạnh 2a cạnh bên SA vuông góc  (ảnh 1)

Xem đáp án » 28/06/2022 2,692

Câu 4:

Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]

Xem đáp án » 28/06/2022 2,666

Câu 5:

Một đa giác lồi có 50 cạnh thì có bao nhiêu đường chéo.

Xem đáp án » 28/06/2022 2,315

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \[{d_1}:\;\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 1}}{2}\] \[{d_2}:\;\left\{ \begin{array}{l}x = 1 - 3t\\y = - 2 + t\\z = - 1 - t\end{array} \right..\] Phương trình đường thẳng \[\Delta \] nằm trong mặt phẳng \[\left( P \right):\;x + 2y - 3z - 2 = 0\] cắt cả hai đường thẳng \[{d_1}\]\[{d_2}\]

Xem đáp án » 28/06/2022 2,075

Câu 7:

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng \[x = 1\]\[x = 4\], biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \[x\] (\[1 \le x \le 4\]) thì được thiết diện là một hình lục giác đều có độ dài cạnh là \[2x\].

Xem đáp án » 28/06/2022 1,596
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua