Câu hỏi:

28/06/2022 495 Lưu

Thầy Tuấn có 15 cuốn sách gồm 4 cuốn sách Toán, 5 cuốn sách Lý, 6 cuốn sách Hóa. Các cuốn sách đôi một khác nhau. Thầy chọn ngẫu nhiên 8 cuốn sách để làm phần thưởng cho một học sinh. Tính xác suất để số cuốn sách còn lại của thầy Tuấn có đủ 3 môn:

A. \[\frac{{54}}{{715}}.\]                          
B. \[\frac{{661}}{{715}}.\]   
C. \[\frac{{2072}}{{2145}}.\]                          
D. \[\frac{{73}}{{2145}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp

Tính xác suất của biến cố đối: \(P\left( A \right) = 1 - P\left( {\overline A } \right)\)

Cách giải

Số phần tử của không gian mẫu là: \({n_\Omega } = C_{15}^8\)

Gọi biến cố A: “Số cuốn sách còn lại của thầy Tuấn có đủ cả ba môn”.

Khi đó ta có biến cố: \(\overline A \): “Số cuốn sách còn lại thầy Tuấn không có đủ cả 3 môn”.

Ta có các trường hợp xảy ra:

+) TH1: 7 cuốn sách còn lại chỉ có Toán và Lý. Số cách chọn là: \(C_9^7.\)

+) TH2: 7 cuốn sách còn lại chỉ có Lý và Hóa. Số cách chọn là: \(C_{11}^7.\)

+) TH3: 7 cuốn sách còn lại chỉ có Hóa và Toán. Số cách chọn là: \(7C_{10}^7\)

\( \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right) = \frac{{C_9^7 + C_{11}^7 + C_{10}^7}}{{C_{15}^8}} = 1 - \frac{{54}}{{715}} = \frac{{661}}{{715}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 95                         
B. 94                         
C. 96                         
D. Vô số

Lời giải

Đáp án A

Tập xác định: \(D = \mathbb{R}.\)

Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)

Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)

Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)

Có 95 giá trị nguyên của m thỏa mãn.

Câu 2

A. \[P = - 5.\]            
B. \[P = 5.\]                
C. \[P = - 4.\]            
D. \[P = 2.\]

Lời giải

Đáp án B

Ta có \(\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = \int\limits_4^5 {\left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right)dx} = \ln \left| {\frac{{x + 1}}{{x + 2}}} \right|\left| {_{\scriptstyle\atop\scriptstyle4}^{\scriptstyle5\atop\scriptstyle}} \right. = 2\ln 2 + 2\ln 3 - \ln 5 - \ln 7.} \)

Suy ra \(\left\{ \begin{array}{l}a = b = 2\\c = d = - 1\end{array} \right. \Rightarrow P = ab + cd = 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{{a^3}\sqrt 3 }}{3}.\]                  
B. \[\frac{{8{a^3}\sqrt 3 }}{9}.\]     
C. \[\frac{{{a^3}\sqrt 3 }}{9}.\]                         
D. \[\frac{{8{a^3}\sqrt 3 }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{1}.\]        
B. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{{ - 1}}.\]               
C. \[\frac{{x - 3}}{{ - 5}} = \frac{{y + 2}}{1} = \frac{{z + 1}}{{ - 1}}.\]                          
D. \[\frac{{x + 8}}{1} = \frac{{y - 3}}{3} = \frac{z}{{ - 4}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[C_{50}^2.\]       
B. \[A_{50}^2.\]        
C. \[C_{50}^2 - 50.\] 
D. \[A_{50}^2 - 50.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP