Câu hỏi:

28/06/2022 382 Lưu

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \[B,AB = 3a,BC = 4a\]. Cạnh bên SA vuông góc với mặt phẳng đáy. Góc tạo bởi giữa SC và mặt phẳng đáy bằng \[{60^0}\]. Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại  (ảnh 1)

Gọi N là trung điểm của BC. Ta có: \(d\left( {AB;SM} \right) = d\left( {A;\left( {SMN} \right).} \right)\)

Dựng đường cao AK trong tam giác AMN, đường cao AH trong tam giác SAK.

Do \(SA \bot \left( {ABC} \right)\) nên \(SA \bot MN\). (1)

Theo cách dựng ta lại có \(MN \bot AK.\) (2)

Từ (1) và (2) \( \Rightarrow MN \bot AH\)\(AH \bot SA\) (theo cách dựng).

\( \Rightarrow AH \bot \left( {SMN} \right)\) tại H nên \(d\left( {AB;SM} \right) = d\left( {A;\left( {SMN} \right)} \right) = AH.\)

Ta có: \(AK = BN = \frac{{BC}}{2} = 2a;AC = 5a.\)

Xét tam giác SAC\(SA = AC.\tan 60^\circ = 5a\sqrt 3 .\)

Xét tam giác SAK vuông tại A với đường cao AH có:

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{K^2}}} = \frac{1}{{75{a^2}}} + \frac{1}{{4{a^2}}} = \frac{{79}}{{300{a^2}}} \Rightarrow A{H^2} = \frac{{300{a^2}}}{{79}} \Rightarrow AH = \frac{{10\sqrt 3 a}}{{\sqrt {79} }}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Tập xác định: \(D = \mathbb{R}.\)

Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)

Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)

Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)

Có 95 giá trị nguyên của m thỏa mãn.

Lời giải

Đáp án C

+) Ta có \(\log _3^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0.\) Đặt \(t = {\log _3}x.\)\(x \in \left[ {1;81} \right]\) nên \(t \in \left[ {0;4} \right].\)

Khi đó phương trình đã cho trở thành: \({t^2} - \left( {m + 1} \right)t + 3m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = m - 2\end{array} \right.\)

+) Ycbt \( \Leftrightarrow \left\{ \begin{array}{l}0 \le m - 2 \le 4\\m - 2 \ne 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \le m \le 6\\m \ne 5\end{array} \right..\) Vậy có 4 số nguyên m thỏa ycbt.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP