Câu hỏi:

28/06/2022 758 Lưu

Trong không gian Oxyz, cho hai điểm \[A\left( {2; - 2;4} \right),B\left( { - 3;3; - 1} \right)\] và mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 3} \right)^2} = 3\]. Xét điểm M thay đổi thuộc mặt cầu (S), giá trị nhỏ nhất của \[2M{A^2} + 3M{B^2}\] bằng

A. 103                      
B. 108                      
C. 105                       
D. 109

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Mặt cầu \(\left( S \right)\) có tâm \(J\left( {1;3;3} \right),R = \sqrt 3 .\)

Gọi I là điểm thỏa mãn \(2\overrightarrow {IA} + 3\overrightarrow {IB} = \overrightarrow 0 \Rightarrow I\left( { - 1;1;1} \right)\)\(\overrightarrow {IJ} = \left( {2;2;2} \right) \Rightarrow IJ = 2\sqrt 3 .\)

Khi đó \(P = 2M{A^2} + 3M{B^2} = 2{\left( {\overrightarrow {MA} } \right)^2} + 3{\left( {\overrightarrow {MB} } \right)^2} = 2{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + 3{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2}\)

Suy ra \(P = 5M{I^2} + 2I{A^2} + 3I{B^2} + 2\overrightarrow {MI} \left( {\underbrace {2\overrightarrow {IA} + 3\overrightarrow {IB} }_{\overrightarrow 0 }} \right)\)

Do đó \({P_{\min }} \Leftrightarrow M{I_{\min }}.\) Ta có hình minh họa sau:

Trong không gian Oxyz, cho hai điểm  A(2;-2;4), B(-3;3;-1) và mặt cầu  (ảnh 1)

Khi đó \(M{I_{\min }} \Leftrightarrow MI = IH \Rightarrow I \equiv H\) với H là trung điểm IJ.

Khi đó ta có \(IM = \frac{{IJ}}{2} = \frac{{2\sqrt 3 }}{2} = \sqrt 3 .\) Đồng thời \(\left\{ \begin{array}{l}IA = 3\sqrt 3 \\IB = 2\sqrt 3 \end{array} \right.\)

Do đó \({P_{\min }} = 5M{I^2} + 2I{A^2} + 3I{B^2} = 5.3 + 2.27 + 3.12 = 105\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 95                         
B. 94                         
C. 96                         
D. Vô số

Lời giải

Đáp án A

Tập xác định: \(D = \mathbb{R}.\)

Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)

Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)

Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)

Có 95 giá trị nguyên của m thỏa mãn.

Câu 2

A. \[P = - 5.\]            
B. \[P = 5.\]                
C. \[P = - 4.\]            
D. \[P = 2.\]

Lời giải

Đáp án B

Ta có \(\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = \int\limits_4^5 {\left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right)dx} = \ln \left| {\frac{{x + 1}}{{x + 2}}} \right|\left| {_{\scriptstyle\atop\scriptstyle4}^{\scriptstyle5\atop\scriptstyle}} \right. = 2\ln 2 + 2\ln 3 - \ln 5 - \ln 7.} \)

Suy ra \(\left\{ \begin{array}{l}a = b = 2\\c = d = - 1\end{array} \right. \Rightarrow P = ab + cd = 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{{a^3}\sqrt 3 }}{3}.\]                  
B. \[\frac{{8{a^3}\sqrt 3 }}{9}.\]     
C. \[\frac{{{a^3}\sqrt 3 }}{9}.\]                         
D. \[\frac{{8{a^3}\sqrt 3 }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{1}.\]        
B. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{{ - 1}}.\]               
C. \[\frac{{x - 3}}{{ - 5}} = \frac{{y + 2}}{1} = \frac{{z + 1}}{{ - 1}}.\]                          
D. \[\frac{{x + 8}}{1} = \frac{{y - 3}}{3} = \frac{z}{{ - 4}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[C_{50}^2.\]       
B. \[A_{50}^2.\]        
C. \[C_{50}^2 - 50.\] 
D. \[A_{50}^2 - 50.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP