Câu hỏi:
28/06/2022 689Cho hình chóp S.ABCD có chiều cao bằng 9 và đáy là hình bình hành có diện tích bằng 27. Gọi \[M,N,P,Q\] lần lượt là các trọng tâm của các mặt bên SAB, SBC, SCD, SDA. Tính thể tích khối đa diện lồi có các đỉnh \[A,B,C,D,M,N,P,Q\].
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án B
Thể tích khối chóp \({V_{S.ABCD}} = \frac{1}{3}.9.27 = 81.\)
Gọi I, J, K, L lần lượt là giao điểm của mặt phẳng \(\left( {MNPQ} \right)\) và SA, SB, SC, SD.
Vì \(IJKL\) đồng dạng với ABCD theo tỉ số \(\frac{2}{3}\) nên \({S_{IJKL}} = \frac{4}{9}{S_{ABCD}}.\)
Thể tích các khối chóp AIMQ, BJMN, CKNP, DLPQ bằng nhau và bằng
\({V_2} = \frac{1}{3}.{S_{IMQ}}.d\left( {A,\left( {IMQ} \right)} \right) = \frac{1}{3}.\frac{1}{8}.{S_{MBPQ}}.\frac{1}{3}.d\left( {S,\left( {ABCD} \right)} \right)\)
\( = \frac{1}{3}.\frac{1}{8}.\frac{4}{9}.{S_{ABCD}}.\frac{1}{3}.d\left( {S,\left( {ABCD} \right)} \right) = \frac{1}{{54}}.81 = \frac{3}{2}.\)
Thể tích \({V_1} = {V_{IJKL.ABCD}} = {V_{S.ABCD}} - {V_{S.IJKL}} = {V_{S.ABCD}} - \frac{1}{3}.{S_{IJKL}}.d\left( {S,\left( {IJKL} \right)} \right)\)
\( = {V_{S.ABCD}} - \frac{1}{3}.\frac{4}{9}.{S_{ABCD}}.\frac{2}{3}.d\left( {S,\left( {ABCD} \right)} \right) = \frac{{19}}{{27}}{V_{S.ABCD}} = 57.\)
Vậy thể tích cần tính bằng \(V = {V_1} - 4{V_2} = 57 - 4.\frac{3}{2} = 51.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Tập xác định: \(D = \mathbb{R}.\)
Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)
Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)
Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)
Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)
Có 95 giá trị nguyên của m thỏa mãn.
Lời giải
Đáp án C
+) Ta có \(\log _3^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0.\) Đặt \(t = {\log _3}x.\) Vì \(x \in \left[ {1;81} \right]\) nên \(t \in \left[ {0;4} \right].\)
Khi đó phương trình đã cho trở thành: \({t^2} - \left( {m + 1} \right)t + 3m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = m - 2\end{array} \right.\)
+) Ycbt \( \Leftrightarrow \left\{ \begin{array}{l}0 \le m - 2 \le 4\\m - 2 \ne 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \le m \le 6\\m \ne 5\end{array} \right..\) Vậy có 4 số nguyên m thỏa ycbt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải