Câu hỏi:
28/06/2022 669Cho hình chóp S.ABCD có chiều cao bằng 9 và đáy là hình bình hành có diện tích bằng 27. Gọi \[M,N,P,Q\] lần lượt là các trọng tâm của các mặt bên SAB, SBC, SCD, SDA. Tính thể tích khối đa diện lồi có các đỉnh \[A,B,C,D,M,N,P,Q\].
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án B
Thể tích khối chóp \({V_{S.ABCD}} = \frac{1}{3}.9.27 = 81.\)
Gọi I, J, K, L lần lượt là giao điểm của mặt phẳng \(\left( {MNPQ} \right)\) và SA, SB, SC, SD.
Vì \(IJKL\) đồng dạng với ABCD theo tỉ số \(\frac{2}{3}\) nên \({S_{IJKL}} = \frac{4}{9}{S_{ABCD}}.\)
Thể tích các khối chóp AIMQ, BJMN, CKNP, DLPQ bằng nhau và bằng
\({V_2} = \frac{1}{3}.{S_{IMQ}}.d\left( {A,\left( {IMQ} \right)} \right) = \frac{1}{3}.\frac{1}{8}.{S_{MBPQ}}.\frac{1}{3}.d\left( {S,\left( {ABCD} \right)} \right)\)
\( = \frac{1}{3}.\frac{1}{8}.\frac{4}{9}.{S_{ABCD}}.\frac{1}{3}.d\left( {S,\left( {ABCD} \right)} \right) = \frac{1}{{54}}.81 = \frac{3}{2}.\)
Thể tích \({V_1} = {V_{IJKL.ABCD}} = {V_{S.ABCD}} - {V_{S.IJKL}} = {V_{S.ABCD}} - \frac{1}{3}.{S_{IJKL}}.d\left( {S,\left( {IJKL} \right)} \right)\)
\( = {V_{S.ABCD}} - \frac{1}{3}.\frac{4}{9}.{S_{ABCD}}.\frac{2}{3}.d\left( {S,\left( {ABCD} \right)} \right) = \frac{{19}}{{27}}{V_{S.ABCD}} = 57.\)
Vậy thể tích cần tính bằng \(V = {V_1} - 4{V_2} = 57 - 4.\frac{3}{2} = 51.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số các giá trị nguyên của m để hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \left( {m + 50} \right){x^2} + \left( {{m^2} + 100m} \right)x + 2020m\] nghịch biến trên \[\left( {7;13} \right)\] là
Câu 2:
Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\] là
Câu 3:
Cho khối chóp S.ABCD có đáy là hình vuông cạnh \[2a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy, mặt bên \[(SBC)\] tạo với đáy một góc \[{30^0}\].Thể tích của khối chóp đã cho bằng
Câu 4:
Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \[{d_1}:\;\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 1}}{2}\] và \[{d_2}:\;\left\{ \begin{array}{l}x = 1 - 3t\\y = - 2 + t\\z = - 1 - t\end{array} \right..\] Phương trình đường thẳng \[\Delta \] nằm trong mặt phẳng \[\left( P \right):\;x + 2y - 3z - 2 = 0\] cắt cả hai đường thẳng \[{d_1}\] và \[{d_2}\] là
Câu 7:
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng \[x = 1\] và \[x = 4\], biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \[x\] (\[1 \le x \le 4\]) thì được thiết diện là một hình lục giác đều có độ dài cạnh là \[2x\].
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận