Câu hỏi:

28/06/2022 618

Cho hình chóp S.ABCD có chiều cao bằng 9 và đáy là hình bình hành có diện tích bằng 27. Gọi \[M,N,P,Q\] lần lượt là các trọng tâm của các mặt bên SAB, SBC, SCD, SDA. Tính thể tích khối đa diện lồi có các đỉnh \[A,B,C,D,M,N,P,Q\].

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cho hình chóp S.ABCD có chiều cao bằng 9 và đáy là hình bình hành  (ảnh 1)

Thể tích khối chóp \({V_{S.ABCD}} = \frac{1}{3}.9.27 = 81.\)

Gọi I, J, K, L lần lượt là giao điểm của mặt phẳng \(\left( {MNPQ} \right)\)SA, SB, SC, SD.

\(IJKL\) đồng dạng với ABCD theo tỉ số \(\frac{2}{3}\) nên \({S_{IJKL}} = \frac{4}{9}{S_{ABCD}}.\)

Thể tích các khối chóp AIMQ, BJMN, CKNP, DLPQ bằng nhau và bằng

\({V_2} = \frac{1}{3}.{S_{IMQ}}.d\left( {A,\left( {IMQ} \right)} \right) = \frac{1}{3}.\frac{1}{8}.{S_{MBPQ}}.\frac{1}{3}.d\left( {S,\left( {ABCD} \right)} \right)\)

\( = \frac{1}{3}.\frac{1}{8}.\frac{4}{9}.{S_{ABCD}}.\frac{1}{3}.d\left( {S,\left( {ABCD} \right)} \right) = \frac{1}{{54}}.81 = \frac{3}{2}.\)

Thể tích \({V_1} = {V_{IJKL.ABCD}} = {V_{S.ABCD}} - {V_{S.IJKL}} = {V_{S.ABCD}} - \frac{1}{3}.{S_{IJKL}}.d\left( {S,\left( {IJKL} \right)} \right)\)

\( = {V_{S.ABCD}} - \frac{1}{3}.\frac{4}{9}.{S_{ABCD}}.\frac{2}{3}.d\left( {S,\left( {ABCD} \right)} \right) = \frac{{19}}{{27}}{V_{S.ABCD}} = 57.\)

Vậy thể tích cần tính bằng \(V = {V_1} - 4{V_2} = 57 - 4.\frac{3}{2} = 51.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số các giá trị nguyên của m để hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \left( {m + 50} \right){x^2} + \left( {{m^2} + 100m} \right)x + 2020m\] nghịch biến trên \[\left( {7;13} \right)\]

Xem đáp án » 28/06/2022 4,070

Câu 2:

Cho khối chóp S.ABCD có đáy là hình vuông cạnh \[2a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy, mặt bên \[(SBC)\] tạo với đáy một góc \[{30^0}\].Thể tích của khối chóp đã cho bằng

Cho khối chóp S.ABCD có đáy là hình vuông cạnh 2a cạnh bên SA vuông góc  (ảnh 1)

Xem đáp án » 28/06/2022 2,422

Câu 3:

Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\]

Xem đáp án » 28/06/2022 2,300

Câu 4:

Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]

Xem đáp án » 28/06/2022 2,103

Câu 5:

Một đa giác lồi có 50 cạnh thì có bao nhiêu đường chéo.

Xem đáp án » 28/06/2022 2,003

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho \[\vec a = \vec i + 3\vec j - 2\vec k\]. Tọa độ của vectơ \[\vec a\]

Xem đáp án » 28/06/2022 1,140

Câu 7:

Cho hàm số \[y = f\left( x \right)\] liên tục có đạo hàm trên \[\mathbb{R},\] và có đồ thị như hình vẽ. Kí hiệu \[g\left( x \right) = f\left( {2\sqrt {2x} + \sqrt {1 - x} } \right) + m.\] Tìm điều kiện của tham số m để \[\mathop {Max}\limits_{\left[ {0;1} \right]} g\left( x \right) > 2\mathop {Min}\limits_{\left[ {0;1} \right]} g\left( x \right).\]

Cho hàm số y=f(x)  liên tục có đạo hàm trên  R và có đồ thị như hình vẽ (ảnh 1)

Xem đáp án » 28/06/2022 1,024

Bình luận


Bình luận