Câu hỏi:

28/06/2022 380

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn \[\left[ { - 10;10} \right]\] để bất phương trình \[{\log _3}\frac{{2{x^2} + x + m + 1}}{{{x^2} + x + 1}} \ge 2{x^2} + 4x + 5 - 2m\] có nghiệm. Số phần tử của tập hợp S bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Để ý vế trái có 2m nên bất phương trình tương đương

\({\log _3}\left( {2{x^2} + x + m + 1} \right) + 2\left( {2{x^2} + x + m + 1} \right) \ge {\log _3}\left( {{x^2} + x + 1} \right) + 6\left( {{x^2} + x + 1} \right) + 1\)

\( \Leftrightarrow {\log _3}\left( {2{x^2} + x + n + 1} \right) + 2\left( {2{x^2} + x + m + 1} \right) \ge {\log _3}\left( {3{x^2} + 3x + 3} \right) + 6\left( {{x^2} + x + 1} \right)\)

Sử dụng hàm số tương đồng

\(f\left( t \right) = {\log _3}t + 2t \Rightarrow f\left( t \right) \uparrow \Rightarrow f\left( {2{x^2} + x + m + 1} \right) \ge f\left( {3{x^2} + 3x + 3} \right)\)

\( \Leftrightarrow 2{x^2} + x + m + 1 \ge 3{x^2} + 3x + 3 \Leftrightarrow m \ge {x^2} + 2x + 2 \Leftrightarrow m \ge {\left( {x + 1} \right)^2} + 1\)

Bất phương trình có nghiệm khi \(m \ge \min \left[ {{{\left( {x + 1} \right)}^2} + 1} \right] = 1,\) suy ra 10 giá trị nguyên m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số các giá trị nguyên của m để hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \left( {m + 50} \right){x^2} + \left( {{m^2} + 100m} \right)x + 2020m\] nghịch biến trên \[\left( {7;13} \right)\]

Xem đáp án » 28/06/2022 4,238

Câu 2:

Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\]

Xem đáp án » 28/06/2022 3,224

Câu 3:

Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]

Xem đáp án » 28/06/2022 2,501

Câu 4:

Cho khối chóp S.ABCD có đáy là hình vuông cạnh \[2a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy, mặt bên \[(SBC)\] tạo với đáy một góc \[{30^0}\].Thể tích của khối chóp đã cho bằng

Cho khối chóp S.ABCD có đáy là hình vuông cạnh 2a cạnh bên SA vuông góc  (ảnh 1)

Xem đáp án » 28/06/2022 2,495

Câu 5:

Một đa giác lồi có 50 cạnh thì có bao nhiêu đường chéo.

Xem đáp án » 28/06/2022 2,200

Câu 6:

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng \[x = 1\]\[x = 4\], biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \[x\] (\[1 \le x \le 4\]) thì được thiết diện là một hình lục giác đều có độ dài cạnh là \[2x\].

Xem đáp án » 28/06/2022 1,422

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \[{d_1}:\;\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 1}}{2}\] \[{d_2}:\;\left\{ \begin{array}{l}x = 1 - 3t\\y = - 2 + t\\z = - 1 - t\end{array} \right..\] Phương trình đường thẳng \[\Delta \] nằm trong mặt phẳng \[\left( P \right):\;x + 2y - 3z - 2 = 0\] cắt cả hai đường thẳng \[{d_1}\]\[{d_2}\]

Xem đáp án » 28/06/2022 1,248