Trong không gian tọa độ Oxyz, cho ba mặt phẳng (\[\left( {{P_1}} \right):\;2x + y + 2z - 5 = 0,\;\left( {{P_2}} \right):\;2x + y + 2z + 13 = 0,\] \[\left( Q \right):\;2x - 2y - z - 5 = 0,\] và điểm \[A\left( { - 2;0;0} \right)\] nằm giữa hai mặt phẳng \[\left( {{P_1}} \right),\;\left( {{P_2}} \right).\] Mặt cầu (S) có tâm \[I\left( {a;b;c} \right)\] luôn đi qua A và tiếp xúc với hai mặt phẳng \[\left( {{P_1}} \right),\;\left( {{P_2}} \right).\] Khi khối cầu \[\left( S \right)\] cắt mặt phẳng (Q) theo thiết diện là hình tròn có diện tích lớn nhất thì \[a + b - 2c\] bằng
Quảng cáo
Trả lời:
Đáp án B
Mặt phẳng cách đều hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\) có phương trình dạng \(\left( P \right):2x + y + 2z + D = 0\)
Lại có \(d\left( {{P_1};P} \right) = d\left( {{P_2};P} \right) \Leftrightarrow \frac{{\left| {D + 5} \right|}}{{\sqrt {4 + 1 + 4} }} = \frac{{\left| {D - 13} \right|}}{{\sqrt {4 + 1 + 4} }} \Leftrightarrow \left| {P + 5} \right| = \left| {P - 13} \right| \Leftrightarrow \left[ \begin{array}{l}{\rm{D}} + 5 = D - 13\\D + 5 = 13 - D\end{array} \right. \Leftrightarrow D = 4\)
Vậy \(\left( P \right):2x + y + 2z + 4 = 0.\) Tâm \(I \in \left( P \right)\) và điểm \(A \in \left( P \right)\)
Điểm I nằm trên giao tuyến của mặt cầu \(\left( {A;R} \right)\) với \(R = d\left( {{P_1};\left( P \right)} \right) = 3\) và mặt phẳng \(\left( P \right)\)
Mặt phẳng \(\left( P \right) \bot \left( Q \right)\), để \(\left( S \right)\) cắt mặt phẳng \(\left( Q \right)\) theo thiết diện là hình tròn có diện tích lớn nhất thì \(d{\left( {I;\left( Q \right)} \right)_{\min }}\)

Để \(d{\left( {I;\left( Q \right)} \right)_{\min }}\) thì \(I = AH \cap \left( {A;R} \right),\) phương trình \(AH:\left\{ \begin{array}{l}x = - 2 + 2t\\y = - 2t\\z = - t\end{array} \right.\)
Gọi \(I\left( { - 2 + 2t; - 2t; - t} \right) \Rightarrow I{A^2} = 9{t^2} = 9 \Leftrightarrow t = \pm 1 \Rightarrow \left[ \begin{array}{l}I\left( {0; - 2; - 1} \right)\\I\left( { - 4;2;1} \right)\end{array} \right.\)
Kiểm tra khoảng cách từ I đến \(\left( Q \right)\) suy ra \(I\left( {0; - 2; - 1} \right)\) là điểm cần tìm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Tập xác định: \(D = \mathbb{R}.\)
Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)
Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)
Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)
Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)
Có 95 giá trị nguyên của m thỏa mãn.
Lời giải
Đáp án C
+) Ta có \(\log _3^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0.\) Đặt \(t = {\log _3}x.\) Vì \(x \in \left[ {1;81} \right]\) nên \(t \in \left[ {0;4} \right].\)
Khi đó phương trình đã cho trở thành: \({t^2} - \left( {m + 1} \right)t + 3m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = m - 2\end{array} \right.\)
+) Ycbt \( \Leftrightarrow \left\{ \begin{array}{l}0 \le m - 2 \le 4\\m - 2 \ne 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \le m \le 6\\m \ne 5\end{array} \right..\) Vậy có 4 số nguyên m thỏa ycbt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.