Câu hỏi:
28/06/2022 235Có bao nhiêu giá trị nguyên dương của tham số m để tồn tại các số thực \[x,y\] thỏa mãn đồng thời \[{e^{3x + 5y - 10}} - {e^{x + 3y - 9}} = 1 - 2x - 2y\] và \[\log _5^2(3x + 2y + 4) - (m + 6){\log _5}(x + 5) + {m^2} + 9 = 0\]?
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
Đáp án C
Ta có \({e^{3x + 5y - 10}} - {e^{x + 3y - 9}} = 1 - 2x - 2y \Leftrightarrow {e^{3x + 5y - 10}} - {e^{x + 3y - 9}} = \left( {x + 3y - 9} \right) - \left( {3x + 5y - 10} \right)\)
\( \Leftrightarrow {e^{3x + 5y - 10}} + \left( {3x + 5y - 10} \right) = {e^{x + 3y - 9}} + \left( {x + 3y - 9} \right)\)
\( \Leftrightarrow f\left( {3x + 5y - 10} \right) = f\left( {x + 3y - 9} \right)\) (1)
Với \(f\left( t \right) = {e^t} + t.\) Vì \(f'\left( t \right) = {e^t} + 1 > 0\,\,\forall t \in \mathbb{R}\) nên \(f\left( t \right)\) là hàm số đồng biến trên R.
Do đó \(\left( 1 \right) \Leftrightarrow 3x + 5y - 10 = x + 3y - 9 \Leftrightarrow 2y = 1 - 2x.\)
Thay vào điều kiện còn lại trong đề bài ta được phương trình
\(\log _5^2\left( {x + 5} \right) - \left( {m + 6} \right){\log _5}\left( {x + 5} \right) + {m^2} + 9 = 0\) (2)
Bài toán được thỏa mãn khi và chỉ khi phương trình (2) có nghiệm x, điều này xảy ra khi
\(\Delta = 3{m^2} + 12m \ge 0 \Leftrightarrow 0 \le m \le 4 \Rightarrow m = 1,m = 2,m = 3,m = 4\) (vì m là số nguyên dương).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số các giá trị nguyên của m để hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \left( {m + 50} \right){x^2} + \left( {{m^2} + 100m} \right)x + 2020m\] nghịch biến trên \[\left( {7;13} \right)\] là
Câu 2:
Cho khối chóp S.ABCD có đáy là hình vuông cạnh \[2a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy, mặt bên \[(SBC)\] tạo với đáy một góc \[{30^0}\].Thể tích của khối chóp đã cho bằng
Câu 3:
Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\] là
Câu 4:
Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho \[\vec a = \vec i + 3\vec j - 2\vec k\]. Tọa độ của vectơ \[\vec a\] là
Câu 7:
Cho hàm số \[y = f\left( x \right)\] liên tục có đạo hàm trên \[\mathbb{R},\] và có đồ thị như hình vẽ. Kí hiệu \[g\left( x \right) = f\left( {2\sqrt {2x} + \sqrt {1 - x} } \right) + m.\] Tìm điều kiện của tham số m để \[\mathop {Max}\limits_{\left[ {0;1} \right]} g\left( x \right) > 2\mathop {Min}\limits_{\left[ {0;1} \right]} g\left( x \right).\]
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!