Câu hỏi:

01/07/2022 5,209

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 1} \right)^3}\left[ {{x^2} + \left( {4m - 5} \right)x + {m^2} - 7m + 6} \right],{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}\). Có bao nhiêu số nguyên m để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng 5 điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp giải:

Nếu hàm số \(y = f\left( x \right)\)n điểm cực trị dương thì hàm số \(y = f\left( {\left| x \right|} \right)\)\(n + 1\) điểm cực trị.

Giải chi tiết:

Để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng 5 điểm cực trị thì hàm số \(y = f\left( x \right)\) phải có 2 điểm cực trị dương \( \Rightarrow \) Phương trình \(f'\left( x \right) = 0\) phải có 2 nghiệm bội lẻ dương phân biệt.

Xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {nghiem{\mkern 1mu} {\mkern 1mu} boi{\mkern 1mu} {\mkern 1mu} 3} \right)}\\{{x^2} + \left( {4m - 5} \right)x + {m^2} - 7m + 6 = 0{\mkern 1mu} {\mkern 1mu} \left( * \right)}\end{array}} \right.\)

Do đó phương trình (*) cần phải có 1 nghiệm bội lẻ dương khác 1.

Ta có: \(\Delta = {\left( {4m - 5} \right)^2} - 4\left( {{m^2} - 7m + 6} \right)\)

\( = 16{m^2} - 40m + 25 - 4{m^2} + 28m - 24\)

\( = 12{m^2} - 12m + 1\)

Để (*) có 1 nghiệm bội lẻ dương khác 1 thì:

\(\left\{ {\begin{array}{*{20}{l}}{\Delta = 12{m^2} - 12m + 1 > 0}\\{P = {m^2} - 7m + 6 \le 0}\\{1 + 4m - 5 + {m^2} - 7m + 6 \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m > \frac{{3 + \sqrt 6 }}{6}}\\{m < \frac{{3 - \sqrt 6 }}{6}}\end{array}} \right.}\\{1 \le m \le 6}\\{m \ne 1}\\{m \ne 2}\end{array}} \right.\)\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{1 < m \le 6}\\{m \ne 2}\end{array}} \right.\)

Vậy có 4 số nguyên m thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(S = \frac{{937}}{{12}}\)

Phương pháp giải:

- Giải phương trình hoành độ giao điểm.

- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\)\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Giải chi tiết:

Xét phương trình hoành độ giao điểm:

\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)

Vậy diện tích của hình phẳng \(\left( H \right)\) là:

\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).

Lời giải

Đáp án D

Phương pháp giải:

- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.

- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).

Giải chi tiết:

Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).

Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)

\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)

Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP