Câu hỏi:

12/07/2024 6,092 Lưu

Cho xOy^. Vẽ cung tròn tâm O, cung này cắt Ox, Oy theo thứ tự tại M, N. Vẽ hai cung tròn tâm M và tâm N có cùng bán kính sao cho chúng cắt nhau tại điểm P nằm trong

xOy^. Nối O với P (Hình 16). Hãy chứng minh rằng DOMP = DONP, từ đó suy ra OP là tia phân giác của xOy^.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Do M và N cùng thuộc cung tròn tâm O nên OM = ON.

Hai cung tròn tâm M và N có cùng bán kính cắt nhau tại P nên MP = NP.

Xét tam giác OMP và tam giác ONP:

OM = ON (chứng minh trên).

OP chung.

MP = NP (chứng minh trên).

Do đó DOMP = DONP (c.c.c).

Suy ra MOP^=NOP^ (2 góc tương ứng).

Mà OP nằm giữa OM và ON nên OP là tia phân giác của xOy^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét tam giác OAC vuông tại A và tam giác OBD vuông tại B:

AOC^=BOD^ (2 góc đối đỉnh).

OA = OB (theo giả thiết).

Do đó DOAC = DOBD (góc nhọn - cạnh góc vuông).

Suy ra OC = OD (2 cạnh tương ứng).

Mà O nằm giữa C và D nên O là trung điểm của CD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP