Câu hỏi:
13/07/2024 5,450Cho tam giác ABC cân tại A. Tia phân giác của các góc B và C cắt nhau tại M. Tia AM cắt BC tại H. Chứng minh rằng H là trung điểm của BC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do DABC cân tại A nên AB = AC.
Tam giác ABC có M là giao điểm hai đường phân giác.
Mà ba đường phân giác của tam giác ABC đồng quy nên AM là đường phân giác của tam giác ABC.
Suy ra hay .
Xét DAHB và DAHC có:
AB = AC (chứng minh trên).
(chứng minh trên).
AH chung.
Suy ra DAHB = DAHC (c.g.c).
Do đó HB = HC (2 cạnh tương ứng).
Mà H nằm giữa B và C nên H là trung điểm của BC.
Vậy H là trung điểm của BC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ba thành phố A, B, C được nối với nhau bởi ba xa lộ (Hình 9). Người ta muốn tìm một địa điểm để làm một sân bay sao cho địa điểm này phải cách đều ba xa lộ đó. Hãy xác định vị trí của sân bay thỏa mãn điều kiện trên và giải thích cách thực hiện.
Câu 2:
Một nông trại nằm trên mảnh đất hình tam giác có ba cạnh tường rào tiếp giáp với ba con đường (Hình 7). Hỏi phải đặt trạm quan sát ở đâu để nó cách đều ba cạnh tường rào?
Câu 3:
Cho tam giác ABC cân tại A. Kẻ đường trung tuyến AM. Tia phân giác của góc B cắt AM tại I. Chứng minh rằng CI là tia phân giác của góc C.
Câu 4:
Trong Hình 8, I là giao điểm ba đường phân giác của tam giác ABC.
a) Cho biết IM = 6 (Hình 8a). Tính IK và IN.
b) Cho biết IN = x + 3, IM = 2x - 3 (Hình 8b). Tìm x.
Câu 5:
Cho tam giác AMN vuông tại A. Tia phân giác của góc M và N cắt nhau tại I. Tia MI cắt AN tại R. Kẻ RT vuông góc với AI tại T. Chứng minh rằng AT = RT.
Câu 6:
Điểm nào nằm bên trong tam giác và cách đều ba cạnh của tam giác?
về câu hỏi!