Câu hỏi:

05/07/2022 2,021 Lưu

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây?

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây (ảnh 1)

A. \[y = \frac{{ - x - 1}}{{x - 1}}\]     
B. \[y = \frac{{x + 1}}{{x - 1}}\]       
C. \[y = \frac{{ - x + 1}}{{x + 1}}\]      
D. \[y = \frac{{x - 1}}{{x + 1}}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng lần lượt là \(y = 1;x = - 1\).

Ngoài ra hàm số đồng biến trên tập xác định. Chọn A hoặc C.

Tiếp tục tính đạo hàm để loại trừ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Khi bắt đầu tiếp đất vật chuyển động được quảng đường là \(s = 162m\).

Ta có: \(s = \int\limits_0^t {\left( {10t - {t^2}} \right)dt} = \left. {\left( {5{t^2} - \frac{{{t^3}}}{3}} \right)} \right|_0^t = 5{t^2} - \frac{{{t^3}}}{3}\) (trong đó t là thời điểm vật tiếp đất).

Cho \(5{t^2} - \frac{{{t^3}}}{3} = 162 \Rightarrow t = 9\) (Do \(v\left( t \right) = 10t - {t^2} \Rightarrow 0 \le t \le 10\)).

Khi đó vận tốc của vật là: \(v\left( 9 \right) = 10.9 - {9^2} = 9{\rm{ }}\left( {{\rm{m/p}}} \right)\).

Lời giải

Đáp án C

+ Chia cả 2 vế của bất phương trình cho \({2^x} > 0\).

+ Đặt \(t = {\left( {3 + \sqrt 7 } \right)^x}{\rm{ }}\left( {t > 0} \right)\).

+ Đưa bất phương trình về dạng \(m \le f\left( t \right),{\rm{ }}\forall t > 0 \Leftrightarrow m \le \mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( t \right)\).

+ Lập BBT hàm số \(y = f\left( t \right)\) và kết luận.

Chia cả 2 vế của bất phương trình cho \({2^x} > 0\) ta được: \({\left( {3 + \sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} - \left( {m + 1} \right) \ge 0\)

Nhận xét: \({\left( {3 + \sqrt 7 } \right)^x}{\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} = 1\), do đó khi ta đặt \(t = {\left( {3 + \sqrt 7 } \right)^x}{\rm{ }}\left( {t > 0} \right) \Rightarrow {\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} = \frac{1}{t}\).

Phương trình trở thành: \(t + \left( {2 - m} \right)\frac{1}{t} - \left( {m + 1} \right) \ge 0 \Leftrightarrow {t^2} - \left( {m + 1} \right)t + 2 - m \ge 0\)

\( \Leftrightarrow {t^2} - t + 2 \ge m\left( {t + 1} \right) \Leftrightarrow m \le \frac{{{t^2} - t + 2}}{{t + 1}} = f\left( t \right){\rm{ }}\forall t > 0 \Leftrightarrow m \le \mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( t \right)\).

Xét hàm số \(f\left( t \right) = \frac{{{t^2} - t + 2}}{{t + 1}}\left( {t > 0} \right)\), ta có: \(f'\left( t \right) = \frac{{\left( {2t - 1} \right)\left( {t + 1} \right) - {t^2} + t - 2}}{{{{\left( {t + 1} \right)}^2}}} = \frac{{{t^2} + 2t - 3}}{{{{\left( {t + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 3\end{array} \right.\).

BBT:

Có bao nhiêu giá trị nguyên của tham số m thuộc[-10;10]  để bất phương trình sau  (ảnh 1)

Từ BBT \( \Rightarrow m \le 1\).

Kết hợp điều kiện đề bài \( \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{R}\\m \in \left[ { - 10;1} \right]\end{array} \right. \Rightarrow \) có 12 giá trị của m thỏa mãn yêu cầu bài toán.

Câu 3

A. \[\left( {3; + \infty } \right).\]                   
B. \[\left( {\frac{1}{3}; + \infty } \right).\] 
C. \[\left( {\frac{1}{2}; + \infty } \right).\]          
D. \[\left( {2; + \infty } \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left( {1; + \infty } \right).\]                   
B. \[\left( { - \infty ;0} \right).\]        
C. \[\left( {0; + \infty } \right).\]   
D. \[\left( {2; + \infty } \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{x^2} - \left( {2x - 2} \right)\sin x + C.\]                                  

B. \[{x^2} - 2x.\cos x + 2\sin x + C.\]

C. \[\frac{1}{2}{x^2} + 2x.\cos x - 2\sin x + C.\]                           
D. \[\frac{1}{2}{x^2} - 2x.\cos x + 2\sin x + C.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - \frac{3}{4}\]   
B. \[ - \frac{{99}}{4}\]                                
C. \[ - 32\]     
D. \[ - \frac{{75}}{4}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[P = 2\]                 
B. \[P = - \frac{1}{2}\]                               
C. \[P = \frac{1}{2}\]  
D. \[P = - 2\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP